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This paper provides a historical perspective of the fundamental developments that have played a central
role in rotary-wing dynamics and aeroelasticity and have had a major impact on the design of rotary-wing
aircraft. The paper describes a historical progression starting with the classical � ap-pitch problem that em-
ulated � xed-wing behavior and describes the evolution of the dynamic and aeroelastic problems into those
that are unique to rotorcraft, such as the � ap-lag problem, the lag-pitch problem, and the coupled � ap-lag-
torsional problem. Subsequently, the coupled rotor/fuselage aeromechanical problems such as ground and air
resonance are considered. A description of the evolution of the methodology used in the formulation and solu-
tion of these types of problems is also provided, emphasizing the structural and aerodynamic models required
for their effective formulation and solution. The mathematical techniques used for solving the rotary-wing aeroe-
lastic problems in hover and forward � ight are also described. The primary emphasis of the paper is on aeroe-
lastic stability, and aeroelastic response is only treated brie� y. The paper focuses on contributions that have
historical value because they represent landmark treatments. Because of the large amount of material avail-
able, an all-inclusive treatment of the research done in this � eld is impractical, and the paper has unavoidable
omissions.

Nomenclature
a = acceleration vector
[B.Ã/] = tranformation matrix for multiblade

coordinates
b = semichord
Cd0 = pro� le drag coef� cient
C.k/ = Theodorsen’s lift de� ciency function
C 0.k; m; Nhw/ = Loewy’s lift de� ciency function
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CW = weight coef� cient
[C .Ã/] = symbolic matrix, representing linear

damping effects
Oex ; Oey; Oez = unit vectors in the directions of the

coordinates, x0 , y0 , z0, respectively before
deformation

Oe0
x ; Oe0

y; Oe0
z = triad Oex ; Oey; Oez after deformation

e1 = offset of blade root from axis of rotation
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fFN L .Ã; q; Pqg = complete nonlinear state vector loading
h = plunging motion, used in unsteady

aerodynamics
Nhw = .hw =b/ nondimensionalwake spacing
I³ = blade inertia about lag hinge
k; (!b=U ) = reduced frequency
L = unsteady lift, per unit length based on

Greenberg’s theory
[L.Ã/] = linear coef� cient matrix
l = length of elastic part of the blade
m = .!=Ä/ frequency ratio
N or Nb = number of blades
fN .q; Ã/g = nonlinear vector
q = unknown state vector
R = blade radius
R = position vector of a mass point of blade

cross section, in blade-� xed,
rotating reference frame

[S] = transformationmatrix between triads
(Oex ; Oey ; Oez) and (Oe0

x ; Oe0
y ; Oe0

z)
u; v; w = components of the displacementof a point

on the elastic axis of the blade in directions,
Oex ; Oey , and Oez , respectively,subscript k
implies kth blade

V = pulsating � ow velocity in Greenberg’s theory
1V = varying part of V
V0 = constant part of V
vi = mean induced velocity at the rotor disc
fXg = generalized coordinate vector
xA = blade cross-sectionalaerodynamic

center (A.C.) offset from elastic axis
(E.A.), positive for A.C. before E.A.

fz.Ã/g = known periodic forcing
®0 = constant part of pitch, or angle of attack
¯ = � ap angle
¯p = preconing, inclination of the feathering axis

with respect to the hub plane measured in a
vertical plane

¯0 = steady � ap angle
¯1; ¯2 = rigid-body � apping angle for teetering rotor
° = Lock number
1® = change in angle of attack for dynamic stall
±¸ = perturbation in steady in� ow ratio
² = basis for order of magnitude, associated with

typical elastic blade slopes
³ = lag angle
´SLi = viscous structural damping coef� cients

in percent of critical damping, for the
lag modes

µ = total pitch angle
µ0 = steady pitch angle
µ1s; µ1c = cyclic pitch components
Ņ = constant part of the in� ow ratio
¸1s; ¸1c = cyclic components of in� ow ratio
¹ = V cos®R=ÄR advance ratio
½A = density of air
¾ = blade solidity ratio: blade area/disk area
Á = rotation of a cross section of the blade around

the elastic axis
Ã = azimuth angle of blade (Ã D Ät ) measured

from straight aft position
­ = angular velocity vector
N!F1; N!L1; N!T 1 = First rotating natural frequencies in � ap, lag,

and torsion, respectively, nondimensionalized
with respect to Ä

!µ = torsional frequency

I. Introduction and Background

T HE 100th anniversary of the Wright brothers’ historic � ight
is being celebrated by a variety of events, and several survey

papers dealing with various aspects of aeroelasticity are also being
written for this occasion. The present paper focuses on rotary-wing
aeroelasticity. Its objective is to provide a historical perspective on
this fascinating � eld.

When reviewing research in rotary-wing aeroelasticity (RWA),
it is important to note a few historical facts. The Wright broth-
ers � ew in 1903, and Sikorsky built and started � ying the � rst
operational helicopter, the R-4 or (VS-316), in 1942. The R-4
was a three-bladed helicopter with a rotor diameter of 11.6 m
and was powered by a 185-hp engine. Thus, there is an initial
gap of 39 years between � xed-wing and rotary-wing technolo-
gies. Therefore, it is not surprising that certain rotary-wing prob-
lems, particularly those pertaining to unsteady aerodynamics, are
still not well understood. The situation is further compounded
by the complexity of the vehicle when compared to � xed-wing
aircraft.

The � eld of rotary-wing aeroelasticity has been a very active
area of research during the last 40 years. This research activity has
generateda largenumberof papers,whichcombinedwith the papers
in this area published between 1945–1963, constitutes a large body
of literature that is impossible to review in a single survey paper.
Fortunately,a considerablenumberof reviewpapersand bookshave
also been published.

These review papers, when considered in chronological order,
provide a historical perspective on the evolution of the � eld.1¡14

One of the � rst signi� cant reviews of rotary-wing dynamic and
aeroelasticproblems was providedby Loewy,12 where a wide range
of dynamic problems was reviewed in considerabledetail. A more
limited survey emphasizing the role of unsteady aerodynamicsand
vibration problems in forward � ight was presented by Dat.2 Two
comprehensivereviewsof rotary-wingaeroelasticitywerepresented
by Friedmann.3;4 In Ref. 3 a detailedchronologicaldiscussionof the
� ap-lagand coupled� ap-lag-torsionproblems in hover and forward
� ight was presented, emphasizing the inherently nonlinear nature
of the hingeless blade aeroelasticstability problem. The nonlineari-
ties consideredwere geometricalnonlinearitiescaused by moderate
blade de� ections. In Ref. 4, the role of unsteady aerodynamics, in-
cluding dynamic stall, was examined, together with the treatment
of nonlinear aeroelastic problems in forward � ight. Finite element
solutions to RWA problems were also considered, together with
the treatment of coupled rotor-fuselageproblems. Another detailed
survey by Ormiston13 discussed the aeroelasticityof hingeless and
bearingless rotors, in hover, from an experimental and theoretical
point of view.

Althoughaeroelasticstabilityplaysan importantrole in thedesign
of rotor systems, the aeroelasticresponseproblemas representedby
the rotorcraft vibration and dynamic loads prediction plays an even
more critical role. Thus, two other surveys have dealt exclusively
with vibration and its control in rotorcraft.15;16 These papers focus
on the vibrations caused by the aeroelastic response of the rotor,
and the study of various passive, semiactive, and active devices for
controlling such vibrations.

Johnson10;11 has published a comprehensive review paper ad-
dressing both aeroelastic stability and vibration problems for ad-
vanced rotor systems. In a sequel5 to his previous review papers,
Friedmann discussed the principal developments that have taken
place between 1983–1987, emphasizingnew methods for formulat-
ing aeroelastic problems, advances in treatment of the aeroelastic
problem in forward � ight, coupled rotor-fuselage analyses, struc-
tural blade modeling, structural optimization, and the use of active
control for vibration reduction and stability augmentation.

A comprehensive report,14 which contains a detailed review of
the theoretical and experimentaldevelopment in the aeroelasticand
aeromechanical stability of helicopters and tilt-rotor aircraft, car-
ried out under U.S. Army/NASA sponsorship during the period
1967–1987 was prepared by Ormiston et al. Somewhat later, key
ideas and developmentsin four speci� c areas— 1) role of geometric
nonlinearitiesin RWA, 2) structural modeling of composite blades,
3) coupled rotor-fuselage aeromechanical problems and their ac-
tive control, and 4) higher harmonic control for vibration reduction
in rotorcraft—were considered by Friedmann.6 At the same time
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Chopra1 surveyed the state of the art in aeromechanical stability of
helicopters, including pitch � ap, � ap lag, coupled � ap lag torsion,
air and ground resonance. Advances in aeromechanical analysis of
bearingless, circulation-controlled, and composite rotors were also
treated in this detailed paper. Perhaps the most comprehensive pa-
per on RWA was written by Friedmann and Hodges.9 This paper
contains close to 350 references and dwells on all of the important
aspects of rotary-wing aeroelastic stability and response problems.
The treatment is broadand comprehensiveand is currentup to 1991.
A partial review of some recent developmentscan also be found in
Ref. 7.

In additionto the numerouspapersdealingwith the subjectof this
review, this topic is also described in a number of books. Among
these, the most notable one is Johnson’s17 monumental treatise on
helicoptertheory,which containsextensive,detailed,and usefulma-
terialon aerodynamic,dynamic,andmathematicalaspectsof rotary-
wing aerodynamics, dynamics, and aeroelasticity. A more recent
book18 treats several aeroelastic and structural dynamic problems
in rotorcraft. Quite recently, Leishman19 has written an excellent
book on helicopter aerodynamics, which contains good treatments
of unsteady aerodynamics, rotor wake models, and dynamic stall.

The principal objectives of this paper are as follows:
1) Present the historical evolution of modern rotary-wing aeroe-

lasticity, starting with the isolated blade aeroelastic problem and
progressing to the coupled rotor fuselage aeromechanical problem.

2) Present the evolution of the methodology for formulation and
solution of rotary-wing aeroelastic problems. The principal focus
will be on aeroelastic stability; therefore, the aeroelastic response
problem will be mentioned only brie� y.

3) Describe some current trends so as to illustrate considerable
differences between current and past endeavors.

The paper will not attempt to provide a comprehensive literature
review of all of the papers published in the � eld. Instead, it will
focus on particular studies that have a historical value because they
represent an important contribution to the � eld of RWA.

To understandthe historicaldevelopmentof RWA, it is important
to recognize that the mathematical models capable of simulating
rotary-wingaeroelasticbehaviorwere intimately linked to the types
of helicopter rotors used. The evolutionof the various types of main
rotor systems was the principal driver that provided the impetus for
the developmentof the mathematicalmodeling tools. The � rst gen-
eration of helicopters used articulated blades. A typical articulated
rotor hub togetherwith an idealizedrepresentationfor mathematical
modeling are shown in Fig. 1. For this class of rotors, the dynamics
of the bladeare characterizedby the � ap ¯ , lag ³ , and pitch µ angles,
which allow the blade to move as a rigid body.Flexible bending and
torsionaldisplacementcan be added to the displacementsas a result
of the rigid-body motion.

A few years later teeteringrotors, shownin Fig. 2, weredeveloped
and used extensively on helicopters manufactured by Bell as well

Fig. 1 Typical articulated hub (top) and typical articulated blade
model (bottom).

Fig. 2 Typical teetering blade model.

a)

b)

Fig. 3 Typical hingeless rotor hub (top) and two views of a typical
hingeless blade used in mathematical modeling (bottom).

as other companies.These blades also have a � apping hinge, except
that now the rigid-body� ap angle on the � rst blade is equal and op-
posite to that on the second blade, that is, ¯1 D ¡¯2; elastic � ap, lag,
and torsional deformation can be superimposed on the rigid-body
� apping motion. Teetering rotors were suitable primarily for lighter
helicoptersbecause the size of the blades for heavy helicopters cre-
ates almost insurmountabledynamic problems.

The next step in the evolution of rotor systems was the develop-
ment of the hingeless rotors shown in Fig. 3. Hingeless rotor con� g-
urationsstartedappearingin theearly1960sandbecameoperational
in the late 1960s and early 1970s. Figure 3 depicts a typical exam-
ple of a hingeless hub together with a typical model for a hingeless
blade. These blades have no � ap or lag hinges. The pitch bearing
is still needed to introduce the collective and cyclic components of
pitch.
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Fig. 4 Typical bearingless rotor hub.

The � nal step in the evolution of main rotor systems is the bear-
ingless rotor depicted in Fig. 4. Bearingless rotor con� gurations
started appearing in the late 1960s and early 1970s. However, they
were incorporated in helicopters that went into production only in
the late 1990s. This rotor has no hinges; both the � ap and lag de-
grees of freedom are cantilevered. The pitch bearing is replaced
by a � exbeam, and the pitch inputs to the blade are provided by
elastically twisting the blade using the pitch horn.

With this background it is now possible to review some of the
most important developments in RWA. For convenience, the time
period from the mid 1940s to the present is divided into three prin-
cipal periods: 1) the early years, 1945–1970, when engineers and
researchers were struggling to accommodate new developments in
rotor hardware; 2) the golden age, 1970–2000, when many impor-
tant contributionswere made leadingto a much betterunderstanding
of the methods for formulating and solving the RWA problem; and
3) the 21st century or period of re� nement, 2000–present, when the
large computing power currently available is utilized to re� ne the
accuracy and reliability of the methods for formulating and solving
aeroelastic problems, by introducing computational aeroelasticity
and combining it with control,acoustics,and optimizationin a more
general aeromechanical framework.

Each of these periods is considered in detail in the following
sections.

II. Early Years (1945–1970)
A. Isolated Blade Stability

The state of the art emerges when reading all of the papers pub-
lished during this time period. However, an excellent descriptionof
this periodcan be found in Loewy’s outstandingsurveypaper.12 The
insight provided by Loewy is augmented by several other surveys
that partiallycover this time period.2;3;20 This was an interestingpe-
riod characterizedby rapid hardware developments combined with
a lack of sophisticatedmodels capable of replicating the aeroelastic
behavior.The appropriatemethodologyfor formulatingand solving
the rotary-wingbehaviorwas not well understood,and the � eld was
strongly in� uenced by the desire to adapt the most successful tools
that have proven themselves for the � xed-wing static and dynamic
aeroelastic problems to the rotary-wing case. Since the majority
of the rotor systems were articulated, the analyses developed were
aimed at modeling the blade con� guration shown in Fig. 1.

A landmark contribution in this area was a paper by Miller and
Ellis.21 The formulation of the problem was carried out by using
the direct Newtonian approach and writing the equations of mo-
ment equilibrium about the hinge. An important facet of this paper,
which was somewhat typical also of other papers generated in this
period, was the fact that the individuals associated with the work
had industrial experience and outstanding intuitive understanding
of the physics of the problem. Thus, even without achieving a com-
pletely accurate formulation(i.e., some terms in the equationscould
be missing, but they were usually quite small) the conclusions and
the insight provided were usually quite accurate.

The basic problem treated was the coupled � ap-pitch problem,
with ¯ and µ degrees of freedom shown in Fig. 1, augmented by
blade elastic bending. For aeroelastic stability the emphasis was
on hover, using unsteady aerodynamics that representedessentially

Fig. 5 Typical � ap-pitch stability boundaries, showing divergence and
� utter as a function of blade c.g. offset from feathering axis xI /c, ° = 12,
!¯ = 1, and c/R = 0.05.

a quasi-steady version of Theodorsen theory.22 This resembled the
classicalbending-torsion� utter analysisof a � xed wing, augmented
by the aerodynamic and inertia terms caused by rotation. Blade
stability was determined from linear constant coef� cient equations,
which resembled the small perturbation equations commonly used
in � xed-wing aeroelasticity.

A typical stability boundary associatedwith this type of analysis
is shown in Fig. 5. The stability boundary is plotted by providing
the torsional stiffness (!µ =Ä) in per rev, plotted against the off-
set of the cross-sectional center of gravity behind the feathering
axis. Several interesting aspects are noteworthy. Both divergence
and � utter boundariesare evident.Divergencedependson the offset
between feathering axis and cross-sectionalc.g. offset. This differs
from � xed-wing divergence, which depends strictly on offset be-
tween elastic axis and aerodynamic center. It can be shown that
Theodorsen-typeunsteadyaerodynamicshas only a minor effect on
the � utter boundary because the reduced frequency ke is low.21 Two
other importanteffects identi� ed in Ref. 21 were the effect of steady
coning and steady in-plane bending. It was noted21 that steady elas-
tic � apping de� ections have a minor effect on blade stability for an
articulated rotor. On the other hand, it was emphasized that steady
elastic in-planede� ection can have a major effect on blade stability,
particularly for nonuniform spanwise mass distribution.21 There-
fore, this was one of the � rst studies to pinpoint the signi� cance of
the lag degree of freedom in rotary-wing aeroelastic stability.

The type of stability boundary shown in Fig. 5 can be modi� ed
signi� cantly by kinematic coupling K p between the � ap and feath-
ering degrees of freedom as shown in Refs. 23 and 24. Pitch-� ap
coupling can be introduced by a skewed � ap-hinge geometry rel-
ative to the radial axis of the blade as shown in Fig. 6a, or by an
appropriatepositioningof the pitch link relative to the � ap hinge as
shown in Fig. 6b. The pitch-� ap coupling is represented by

1µ D ¡K p1¯ (1)

for the geometry shown in Fig. 6a, K p D tan ±3 , K p > 0, � ap up
decreases the blade pitch. Positive pitch-� ap coupling acts as an
aerodynamicspringonthe� apmotionandhasa signi� cantin� uence
on � ap-pitch stability.

As mentioned, the importance of large steady in-plane de� ection
on � ap-pitch instabilitieswas identi� ed in Ref. 21. Thus, it was only
natural that the next type of instability to receive attention was the
pitch-lag instability.

The � rst comprehensive study of the pitch-lag instability was
carried out by P. C. Chou.25;26 This instabilitywas encountereddur-
ing the whirl tower testing of a very light rotor blade designed by
the Prewitt Aircraft Company for the Vertol H-21 helicopter.High-
amplitude oscillation occurred at low Ä, high collective and max-
imum power, primarily in lead lag, at a frequency of 0:318=rev
(close to lag frequency) and lag amplitude of 30 deg. No coupling
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Fig. 6a Pitch-� ap coupling
caused by skewed � ap hinge.

Fig. 6b Pitch-� ap coupling.

between rotor and tower dynamics was found, and despite the large
oscillations the blades sustained no damage.

A comprehensiveanalysis of this instability for hover was devel-
oped by Chou.25;26 The analysis was linear and restricted to fully
articulated rotors with inelastic blades. A lag damper assumed to
have constant viscous damping C³ was included in the analysis. It
was found that the instability was caused by pitch-lag coupling

1µ D ¡KL 1³ (2)

introduced by skewed lag hinges located outboard of the � apping
hinge. An elegantapproximatestability criterionwas obtained from
the analytical model

C³ C
2KL ¯2

0 ÄI³

[1 ¡ .¯0=µ0/K p]µ0
> 0 (3)

which facilitated the design of stable blades.

During the mid-1960s, two new types of rotor systems, tilt rotors
and hingeless rotors, emerged. The modeling of this class of rotor
systems started a lengthy preoccupationwith one of the most inter-
esting and vexing dynamic problems, the coupled � ap-lag aeroelas-
tic problem. The � rst paper attempting to develop a model for the
� ap-lag instability for hingeless and teetering rotors was presented
by Young.27 The equations of motion for hover and forward � ight
were derived in an ad hoc manner. The author recognized that to
capture the mechanism of instability the coupling between the � ap
and lag degrees of freedom, caused by aerodynamic and coriolis
effects, is required.Because these two types of terms are nonlinear,
they were included, but not in a consistent manner, that is, whereas
terms having a certain order of magnitude were included, others
having a similar order of magnitude were missing in the equations
of motion. The effects of elastic modes and advance ratio were also
incorporated in an approximate manner. Inspired by the stability
criterion shown in Eq. (3), the author derived a fairly complicated
stability criterion for the � ap-lag case for both hover and forward
� ight. Using this stability criterion, a number of sweeping conclu-
sions were reached, some of these were incorrect, some partially
correct, and a few were correct. The paper correctly identi� ed the
lag degree of freedom as the trigger for the � ap-lag instability, and
it also identi� ed the aerodynamicand inertial coupling terms as im-
portant. However, the stability criterion was false; and, therefore,
the conclusion that “: : :all current rotor types are susceptible [to in-
stability] in the speed range of 125–150 knots, or at lower speeds at
high altitude: : :” was also incorrect.27 Subsequently, Hohenemser
and Heaton28 treated the same problem using a different formula-
tion, which suffered from inaccuracies similar to Young’s caused
by a variety of approximations.Instead of a stability criterion, they
tried to determine blade stability by using a somewhat unconven-
tional numerical integration scheme. The results presented in the
paper were mainly of a qualitative nature.

Both studies failed to clearly identify the natureof the � ap-lag in-
stabilityproblembecause they did not accountfor the critical role of
the elastic or structuralcouplingbetween the � ap and lag degreesof
freedom. In retrospect,this is somewhat surprisingbecausea monu-
mental NASA technicalreportwritten by Houbolt and Brooks29 was
availableat that time and it containedthe correct structuralcoupling
terms which were required for the proper treatment of this problem.
It was important to mention that Ref. 29 was overlooked by many
studies on RWA conducted during this time period, and its value
was only recognized belatedly, in the late 1960s and early 1970s.

It is remarkable that while treatments of � ap pitch, pitch lag, and
even � ap lag were presented for the case of hover a comprehensive
analysis of coupled � ap-lag-torsionalblade stability in hover failed
to materialize. Although a set of suitable equations were derived in
Ref. 30, numerical results illustrating blade aeroelastic behavior in
hover were not computed.

Up to this point, the aeroelasticproblems discussed were mainly
those associated with the hovering � ight condition, which is gov-
erned by differential equations with constant coef� cients. One of
the earliest papers to recognize the effect of periodic coef� cients
caused by forward � ight on � apping motion was Horvay.31 The
periodic equations were solved using Hill’s method of in� nite de-
terminants. Clearly, because only the � apping degree of freedom
was considered the level of parametric excitation that is necessary
to cause an instabilityhad to be quite large.This in turn leads to very
high advance ratios that do not occur during normal operating con-
ditions of rotors in forward � ight unless one slows the rotor down.
This approach to dealing with the effect of periodic coef� cients was
used in the coupled � ap-lag-torsional analysis of rotor blades pre-
sented in Bielawa’s dissertation.30 However, the numerical results
obtained were inconclusive.

The studies considered up to now were based on quasi-steadyor
unsteady aerodynamic models that were developed essentially for
the � xed-wing aeroelastic problem. However, there was a growing
awarenessthatRWA requiresunsteadyaerodynamicmodelscapable
of representing the complicated aerodynamic environment present
on a helicopter. The � rst important rotary-wing unsteady aerody-
namic theory developed for hover is the work of Loewy.32 This
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Fig. 7 Idealized wake geometry for Loewy’s incompressible unsteady
aerodynamic model.

theory is a generalization of Theodorsen’s theory, and it provides
a useful approximation to the unsteady wake beneath the hover-
ing rotor. The geometry for Loewy’s model is illustrated by Fig. 7.
In this theory the effect of the spiral returning wake beneath the
rotor is taken into account approximately. The wakes, in� nite in
number, lie in planes parallel to the disc of the rotor and are asso-
ciated with both previous blades (for an N -bladed rotor) and pre-
vious revolutions. The nondimensional wake spacing Nhw D .2¼vi =
ÄNb/ D 4 Ņ=¾ .

The airfoil dynamics in this theory are identical to the simple
harmonic pitch-and-plungemotion postulated in Theodorsen’s the-
ory. Loewy has shown that for this case the unsteady aerodynamic
lift and moment can be written in a form identical to Theodorsen’s
theory, except that Theodorsen’s lift de� ciency function C.k/ is
replaced by a more complicated lift de� ciency function given by
C 0.k; m; Nhw/.

Loewy’s theory is restricted to low in� ow ratios, which implies
a lightly loaded disc. This theory was used for the � rst time to
study “wake � utter” in Refs. 23 and 24, and the classical � ap-
pitch stability boundary shown in Fig. 5 is modi� ed by several nar-
row instability regions present above the � utter boundary shown in
Fig. 5.

Another useful aerodynamictheory developedin this time period
was Greenberg’s theory.33 The theory recognizes that in addition to
constant velocity of oncoming � ow the blade can also experience
a time-dependent, pulsating velocity variation caused by in-plane
motion (lead lag). Furthermore, in addition to harmonic variation
in angle of pitch a constant pitch angle is also imposed on the air-
foil. Greenberg’s theory is a modi� cation to Theodorsen’s theory to
account for these effects. Thus, the unsteady lift on the blade cross
section is given by

L D
1

2
½Aab2 d2h

dt 2
C .V0 C 1V /

d1®

dt

C .®0 C 1®/
d.1V /

dt
¡ xA ¡

b

2
d21®

dt 2

C½AaV bC.k/
dh

dt
C ®01V C V01® C .b ¡ xA/

d1®

dt

C½AaV b[V0®0 C 1¾ V C.2k/] (4)

where V D V0 C 1V ; 1V D ¾V V0ei!t ; and ®0 D constant pitch
setting.

The last two terms in this theory represent, respectively,the static
lift (underlined)and a nonlinear term in the perturbationquantities
(underbraced), which is usually neglected in rotary-wing applica-
tions of this theory. Greenberg’s theory is approximate because it
neglects the effect of fore and aft excursions of the blade or the
effect of the pulsating � ow velocity relative to the mean velocity on

the wake. Reference 33 also provides an appropriateexpression for
the moment. Although Loewy’s theory was applied to RWA aeroe-
lastic problems shortly after its initial development, Greenberg’s
theory was not used until the mid-1970s, when its value was � nally
recognized.

Another concern associated with aerodynamic loading that ma-
terialized during this period was stall � utter. An important early
investigation of stall � utter was conducted by Ham.34 Retreating
blade stall on a model rotor in forward � ight was considered, and
large torsional motion with a frequency close to the blade torsional
natural frequencywas found after the blade entered the stall region.
The sensitivity of the blade torsional amplitude to several parame-
ters was studied. Increases in speed and rearward shift of the blade
cross-sectionalcenterof gravitycaused increasesin theamplitudeof
torsional oscillation. However, increases in torsional damping and
torsionalstiffness reduced the amplitudes.The physicalmechanism
causing the vibration was associatedwith reduction in aerodynamic
pitch damping caused by stall, which led to large-amplitude tor-
sional loads and high blade loads.

In an important sequel to this study, Ham and Young35 conducted
a study of stall � utter using a model rotor in hover. A single-degree-
of-freedom limit-cycle torsional oscillation,with a frequency close
to thenaturaltorsionallag frequencyof theblade,was found to occur
at high collective pitch settings. The origin of this torsional motion
was indicatedby experimentalstudyof chordwisepressurevariation
on the model rotor during the stable limit-cycle oscillation.Using a
simple analysis, the relationshipsbetween the torsional motion and
the effective damping in pitch in presence of stall are determined.
Also the effect of reduced frequencyon limit-cycle amplitudes was
experimentally measured. The implication of the results obtained
for the case of forward � ight were also discussed, and a simple
numerical method for approximating the boundary of stable pitch-
torsional oscillation in forward � ight was described and shown to
produce good correlation with � ight-test results.

B. Coupled Rotor-Fuselage Problems
In addition to isolated blade stability and response problems just

discussed, one also encounters coupled rotor-fuselageproblems as
depicted in Fig. 8. Two types of problems were encountered.When
the helicopter is on the ground, a mechanical instability couples in-
plane blade motion with displacementof the axis of rotation caused
by roll or pitch; this is usually denoted by the term “ground res-
onance. The second instability is in � ight, and again it is caused
by coupling between blade in-plane (lag) motion and body roll or
pitch. This aeromechanical problem is usually denoted by the term
air resonance. This terminologyis unfortunatebecauseneitherphe-
nomenon has anything to do with resonance.

Early in the development of rotorcraft, ground resonance and its
avoidance were identi� ed as major design issues. The � rst de� ni-
tive study of ground resonance was carried out by Coleman and
Feingold.36 This report is a collection of the work done earlier by
those two authors on two bladed rotors on isotropic and anisotropic
supports, as well as rotors having three or more blades. The ground
resonance represents coupling between a low-frequency lag mode
(in the nonrotating frame) and a natural frequency of the structure

Fig. 8 Coupled rotor/fuselage system.
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supporting the hub. This coupling produces lateral and longitudi-
nal displacement of the rotor center of gravity from the center of
rotation. Articulated rotors and hingeless rotors with lag frequency
below 1/rev are susceptible to this instability. Ground resonance is
very destructive. Although ground resonance was well understood
in this time period, only a limited understanding of air resonance
existed.

A valuable study conduced in the late 1960s37 examined the air-
and ground-resonance characteristics of a soft in-plane hingeless
rotor system used on an experimental XH-51A helicopter built by
Lockheed. The rotating fundamental lag frequency of soft-in-plane
rotors is below 1/rev. The particular rotor considered in this study
had a “matched stiffness” con� guration, which eliminated part of
the elastic coupling between the � ap and lag degrees of freedom
and causes the rotor to be more susceptible to the � ap-lag type of
instability. The paper has an excellent graphical description of the
mechanism of ground/air resonance for soft-in-plane hingeless ro-
tors, which occurs when the rotor rpm is is such that Ä ¡ !i p is
close to a body natural frequency. In this case the center of grav-
ity of the rotor disk is whirling about the center of rotation at an
angular velocity !i p , as shown in Fig. 9. The Ä ¡ !i p curves relate
body frequencies, as shown in Fig. 10. For the articulated rotor
helicopter a critical body frequency for ground resonance coin-
cides with the driving frequency when the rotor speed is at a value
below the operating speed, which corresponds to the leftmost cir-
cle on the � gure. The coincidence between the inclined dash–dot
line with the double line marked (on the ground) indicates ground
resonance.The soft-in-planerotor tested and described in the paper
can encounter ground resonance when it is at an rpm above the op-
erating speed as shown by the intersection of the solid line and the
double line denoted (on the ground); however, it can encounter air

Fig. 9 Rotor-in-plane mode in the nonrotating system.

Fig. 10 Driving and body frequency relationships.

resonance if the rotor is slowed in � ight, as indicated by the inter-
section of the solid line and the double line (in the air). As a result of
the special constructionof the rotor, both ground and air resonance
were demonstrated experimentally, and analytical results were cor-
related with experimental data. However, the conclusions reached
in this study were not de� nitive, mainly because of incomplete
understanding of the appropriate structural dynamic modeling of
hingeless rotor systems.

C. Summary of the State of the Art
To set the stage for a discussionof thenext time period,a summary

of the state of the art for the early time period is useful:
1) The pitch-� ap and pitch-lag instabilities of articulated rotors

were reasonablywell understood,particularly for the case of hover.
However, therewas considerableconfusionaboutthe� ap-lagtypeof
instability.The unsteady aerodynamicswas approximated by using
Theodorsen- and Loewy-type unsteady aerodynamics.

2) For the case of forward � ight, there was some understandingof
the role of equationswith periodic coef� cients and its mathematical
implications. However, there was little appreciation for effective
numerical methods for dealing with such equations.There was also
growing appreciation for the important role of retreating blade stall
and stall � utter.

3) There was a goodunderstandingof the ground-resonanceprob-
lem, particularly for articulated rotors. The important role of lag
dampers for preventing this problem was also appreciated.

However, despite the remarkable progress made and the success-
ful design, engineering analysis, and production of a large number
of successful helicopters, the state of the art had major de� cien-
cies that needed to be overcomebefore additionalprogress could be
made. These de� ciencies are summarized here:

1) The � ap-lag instability problem was not well understood.
2) There was only limited appreciationof systematic approaches

to formulating and solving RWA problems.
3) Hingeless rotor aeroelastic behavior and air resonance were

not understood.
4) There was no appreciation for the important role of structural

dynamic models capable of representing coupled � ap-lag-torsional
dynamics in formulating RWA problems.

5) The role of geometric nonlinearities in RWA was not well
understood.

6) Unsteady aerodynamic models, wake models, and dynamic
stall models were not available.

7) Treatments of the true RWA problem, as represented by the
coupled� ap-lag-torsionalproblemin hover and forward � ight, were
not available.

III. Golden Age (1970–2000)
A. Overview of Principal Developments

This period was characterized by rising to the challenges posed
by the unsolved problems summarized at the end of the preceding
section. The accomplishments of this period were summarized in
the various survey papers mentioned in the introductoryportion of
this paper. Before discussing the most important accomplishments
in detail, it is useful to distinguish between two types: 1) accom-
plishments in modeling the aeroelastic behavior of rotor blade and
coupled rotor-fuselagesystems and 2) developmentof modern rotor
systems, such as hingeless and bearingless, used on various rotor-
craft being producedworldwide. Clearly, these two types of accom-
plishments are intertwined because modern rotor systems cannot
be developedwithout certain aeroelasticmodeling capability.Also,
new modeling capabilities are being developed to meet the chal-
lenges of the hardware designer. Emphasis in this paper is on the
most important developments in aeroelastic modeling techniques.

Some key developments in modeling of aeroelastic behavior
that have occurred during this period are listed here: 1) recog-
nition of the fundamental role of structural modeling and asso-
ciated kinematic assumptions in the proper formulation of the
RWA problem; 2) unsteady aerodynamics for attached and sep-
arated � ow; 3) development of systematic tools for formulating
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and solving RWA problems; 4) understanding of the basic cou-
pled � ap-lag aeroelastic problem in hover and forward � ight; 5)
understanding of the coupled � ap-lag-torsional problem in hover
and forward � ight; 6) understanding of air and ground resonance;
7) modeling of composite rotor blades; 8) modeling of hingeless,
bearingless, and swept tip rotor blades; and 9) development of
comprehensive analysis codes capable of modeling several RWA
problems.

A detailed descriptionof all of these items within the framework
of a single paper is quite dif� cult, and therefore one has to be selec-
tive so as to limit the paper to a reasonable length.

B. Role of Structural Modeling
Initially, structural models for isotropic rotor blades were

linear,29;38 and thus no distinctionwas made between the deformed
and undeformed blade con� gurations.The aeroelastic formulations
developedin the late1960swere allbasedon theHouboltandBrooks
equations.29 In the late 1960sand early 1970s it was recognizedthat
geometrical nonlinearities caused by moderate de� ections needed
to be incorporated in the aeroelastic operators associated with the
rotary-wing aeroelastic problem. The distinction between the un-
deformed and deformed blade geometries also produces nonlinear
terms that have to be included in the inertia and aerodynamicopera-
tors. Moderate-de� ection beam theories capableof representingthe
coupled � ap-lag-torsionaldynamics of rotor blades were developed
primarily between 1970–1980, and during the next decade large de-
� ection theorieswere derived.The inceptionof moderate de� ection
theories can be found in two dissertations that were published in
the same year.39;40 An integral part of moderate de� ection theories
was ordering schemes, which allowed one to neglect higher-order
terms in the structural, aerodynamic, and inertia operators asso-
ciated with the aeroelastic problem. Subsequently, the equations
evolved, and more careful derivation of the structural part resulted
in equations that have formed the basis of numerous aeroelastic
studies.41;42

The source and structure of the geometrically nonlinear terms
associated with structural rotations are conveniently illustrated by
a transformation between the triad of unit vectors describing the
deformed and undeformed state of a hingeless blade, as shown in
Fig. 11. Only four independent functions (three displacement vari-
ables and one rotation)are neededfor the exact formof this transfor-
mation becauseof a constraint that the plane in which the vectors Oey

and Oez lie remainsnormal to the deformed beam elastic axis. If these
vectors are, in turn, assumed to lie in the deformed beam cross sec-
tion, then this constraint becomes analogous to the Euler–Bernoulli
hypothesis for a large-deformation theory. Such a transformation,
based on the assumption of small strains and � nite rotations (asso-
ciated with the twist angle and bending slopes), has the following
mathematical form:

Oe0
x

Oe0
y

Oe0
z

D [S]

Oex

Oey

Oez

(5)

where the elements of the transformation matrix [S] determine the
accuracy or order of the theory. A typical transformation where
terms up to the third order are accounted for is given here:

S11 D 1 ¡ 1
2 v2

;x C w2
;x ; S12 D v;x ; S13 D w;x

S21 D ¡ v;x ¡ Áw;x C 1
2
v;x w2

;x ; S22 D 1 ¡ 1
2
v2

;x ¡ Áv;x w;x

S23 D Á ¡ 1
2 w2

;x Á; S31 D ¡ w;x ¡ Áv2
;x ¡ 1

2 v2
;x w;x

S32 D ¡ Á C v;x w;x ¡ 1
2 v2

;x Á ; S33 D 1 ¡ 1
2 w2

;x (6)

Such a transformation can be assumed to imply the existence of
an ordering scheme in which third-order terms, in terms of blade

Fig. 11 Geometry of thebladeelastic axisbefore andafter deformation
(top) and blade cross-sectional geometry before and after deformation
(bottom).

slopes, are neglected.Such an ordering scheme implies

O.1/ C O.²3/ »D O.1/ (7)

where blade slopes are assumed to be moderate and of magnitude
² , that is, 0:10 · ² · 0:20. Use of a less accurate ordering scheme

O.1/ C O.²2/ »D O.1/ (8)

will lead to the neglectof the third-orderterms in Eqs. (6). A word of
caution is in order at this point. To allow for the treatment of applied
moments, the virtual rotation must be obtained as a function of the
deformation variables. The variation must be taken prior to the ne-
glect of the third-order terms; otherwise, the expressions for virtual
rotationwill be incorrect(see Refs. 43 and 44 for more detail on this
point). Transformationsof the form of Eq. (5) have been used as the
basis for moderate-de� ection beam theories, which are suitable for
the aeroelastic stability and response analysisof isotropichingeless
and bearingless rotor blades. Once a transformation represented by
Eq. (5) is available, it is used to derive the inertia and aerodynamic
loadsactingon theblade.Thus, these termspermeatethroughthe en-
tire set of equationsof motion describingthe dynamics of the blade.

Consider as an example the treatment of the coupled � ap-lag-
torsional dynamics of an isolated blade in forward � ight. For this
case the ordering scheme would be based on the order of magnitude
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assumptions given here:

w;x D v;x D Á D O.²/

e1

R
D

b

R
D ¯p D Ņ D ¸1s D ¸1c D w

R
D v

R
D O.²/

µ D µ1c D µ1s D O.1/

u D x I =R D xA=R D O.²2/; Cd0=a D O ²
3
2

x= l D @

@x
D @

@Ã
D ¹ D O.1/ (9)

Application of such an ordering scheme leads to the neglect of nu-
merous higher-order terms. Furthermore, modern computer pack-
ages capable of algebraicmanipulation, such as Mathematica®, can
be used togetherwith an orderingscheme to generateequationswith
a desired level of accuracy.45

Finally, such a scheme is based on common sense and experience
with practical blade con� gurations.Thus, it should be applied with
a certain degree of � exibility.

Structural models for moderate, as well as large de� ection beam
(or blade) theories, have been often validated by correlating them
with experimentaldata obtained in a static experimentconductedat
Princeton.46

The development of moderate de� ection beam theories was fol-
lowed by structural models that use only the smallness of the ex-
tensional strain; otherwise, the analysis allows for arbitrarily large
de� ections and rotations. This approach completely eliminates the
need for an ordering scheme. This type of model is more consis-
tent and mathematically more elegant than blade models based on
ordering schemes. References 47–50 are representative of the � rst
studies that have established this more accurate approach.

When the strain is assumed to be small, two developments are
feasible, depending on the representationof the cross-sectionalde-
formation. Consider the rotation of the deformed beam sectional
frame, which is assumed to be arbitrarily large; this is denoted as
global rotation. Furthermore, consider the rotation of a material el-
ement at some point in the cross section caused by cross-sectional
deformation.This so-called local rotationis relative to the deformed
beam sectional frame. The simpler development assumes that local
rotation is of the order of the strain, whereas the more general one
assumes that the local rotation is of the order of the square root of
the strain. In either case the beam deformation can be expressed
in terms of six generalized strain measures: the extension of the
reference axis, two shear strains at the reference axis, the elastic
twist, and two elastic bendingmeasures. Because of the presenceof
shear-strainmeasures, three independentorientationvariables must
be allowed, as in Ref. 47. That is, it is not possible to express two
of the orientation variables in terms of the derivatives of the three
displacement variables. Also, although not necessary for static and
low-frequency analysis of composite rotor blades, the presence of
shear strain in these developmentsimproves their accuracy in appli-
cations to composite rotor blade analysis when transverse bending
modes higher than the � rst are involved.

C. Unsteady Aerodynamics for Attached and Separated Flow
Accurate modeling of the unsteady aerodynamic loads required

for aeroelasticstability and responsecalculationcontinuesto be one
of the major challenges facing both the analyst and the designer.
The combination of the blade advancing and rotational speed is a
formidablesourceof complexityin the � ow� eld surroundingthe ro-
tor. At large values of the advance ratio, the aerodynamic � ow� eld
around the blade undergoes such variations that there are problems
of transonic � ow, with the shock waves on the advancing blade tip,
problems of � ow reversal (reversed� ow region) and low-speed,un-
steady stall on the retreating blade, and problems caused by high
blade-sweep angle for various azimuthal locations. Modern swept
and curved-tip blade geometries further complicate this problem.
Furthermore, the time-varying geometry of the wake, which is an

important source of unsteady loads, vibration and noise, is an ex-
cruciatingly complex problem that is an order of magnitude more
complicated that the wake geometry of � xed wings.

When dealing with the unsteady aerodynamic problem, one can
make a wide array of assumptions, which lead to diverse models,
starting with simple and computationally ef� cient models and cul-
minating in models, which are capable of simulating the more in-
tricate details of the unsteady � ow. A detailed description of un-
steady aerodynamic models for rotary-wing applications has been
presented in books,17;19 as well as a couple of review papers.51;52

1. Attached-Flow Unsteady Aerodynamics
From the � rst partof this paper, it is evidentthat theunsteadyaero-

dynamic models available were limited to two-dimensional incom-
pressible theories such as Theodorsen, Greenberg,33 and Loewy.32

Because of the low reduced frequency associated with RWA prob-
lems, unsteady aerodynamic effects have been found to be of less
than critical importance. Furthermore, because of its wake struc-
ture Theodorsen’s theory is not suitable for rotary-wingapplication,
whereas Loewy’s theory is limited to lightly loaded rotors.

It is also important to recognize that both are frequency domain
theories, which are not suitable for forward � ight, where the equa-
tions of dynamic equilibrium have periodic coef� cients. For con-
venient mathematical treatment of equations with periodic coef� -
cients, time-domain theories are required. Therefore, Greenberg’s
theory with appropriate modi� cations53¡56 has been often used in
RWA, with the assumption that the aerodynamics are quasisteady,
C.k/ D 1. For this case the theory was also used in forward � ight.

Loewy’s theory has been extended to include compressibilityef-
fects. However, these theories have been rarely used in coupled
� ap-lag-torsionalanalysis in hover.53

Frequency-domain theories have a signi� cant de� ciency when
being applied to aeroelastic stability calculations because the as-
sumption of simple harmonic motion upon which they are based
implies that they are strictly only valid at the stability boundary.
Thus, they provide no information on system damping before or
after the � utter condition is reached, and standard stability anal-
yses based on conventional eigenanalysis, such as the root locus
method, cannot be used. Furthermore, as indicated before, these are
not suitable for rotary-wing aeroelasticanalyses in forward � ight or
applications where the transient response of the aeroelastic system
is required. Thus, there is a need for unsteadyaerodynamictheories
that are capableof modelingunsteadyaerodynamicloads in the time
domain for � nite-time arbitrary motion of an airfoil, representing
the cross section of an oscillating rotor blade. The term “arbitrary
motion” is usedhere to denotegrowingor decayingoscillationswith
a certain frequency.A number of such theorieswere developed,and
Refs. 5 and 57 contain a uni� ed description of such theories.

Time-domain airfoil theories are extensions of previous
frequency-domain theories, using an approach developed by
Edwards58 to extendTheodorsen’s theory to the time domain.Time-
domain versions of Greenberg’s theory can be found in Ref. 59, and
a time-domain version of Loewy’s theory was presented in Ref. 60.

A particularly useful time-domain theory, which has been used
frequently in rotary-wing aeromechanical applications, is the dy-
namic in� ow model, which was developed and used � rst at the be-
ginning of the 1980s.61¡63 The mathematical form of the dynamic
in� ow model in both hover and forward � ight clearly indicates that
it is an arbitrary motion, time-domain theory. The most widely used
version of dynamic in� ow is that developed by Pit and Peters,63

which is suitableforboth hoverand forward � ight.The model repre-
sents unsteadyglobalwake effects in a simple form and is applicable
to the entire rotor. The assumption in this theory is that, for rela-
tively low frequencies, actuator disk theory is valid for both steady
and unsteady conditions.Therefore, dynamic in� ow is essentially a
low-frequency approximation to the unsteady aerodynamics of the
rotor. The total induced velocity on the rotor disk is assumed to
consistof a steady in� ow ¸0 (for trim loadings)and a perturbational
in� ow, denoted ±¸, as a result of transient loadings.The total in� ow
is expressed as:

¸ D ¸0 C ±¸ (10)
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where ±¸ is assumed to be given by

±¸ D ¸1 C ¸1c
r

R
cosÃ C ¸1s

r

R
sin Ã (11)

in which the in� ow variables ¸1 , ¸1c, and ¸1s are related to the
perturbationalthrust coef� cient, roll and pitch-momentcoef� cients
acting on the rotor through the following relation:

[M]

P̧
1

P̧
1c

P̧
1s

C [L]¡1

¸1

¸1c

¸1s

D
CT

¡CM y

CM x P:A:

(12)

P.A. stands for perturbational aerodynamics. The elements of [M]
and [L]¡1 can be obtained either theoretically, by using momen-
tum theory,63 or experimentally.Dynamic in� ow models have been
particularlyuseful for coupled rotor-fuselageaeromechanicalprob-
lems in both hover and forward � ight, and they have been used for
isolated rotor stability analyses.64

Subsequently, the concept of dynamic in� ow has led to the de-
velopment of a complete unsteady aerodynamic model applicable
to RWA.65;66 In this theory the induced � ow on the rotor disk is ex-
pandedin Fouriercoef� cients(azimuthally)andspatialpolynomials
(radially). The coef� cients of these expansion terms are shown to
obey a closed-form set of ordinary differentialequationswith blade
loading (from any source) as the forcing functions. The obvious
advantage of such an approach is that the resultant equations can
be used for arbitrary motions in the time domain (time-marching
or Floquet), in the frequency domain (harmonic balance), or in the
eigenvalue domain (conventional stability analysis) to any degree
of resolution as dictated by the application.

This theory is derived from the linear potential equations with a
skewed cylindrical wake. Wake contraction can also be modeled.
For hover the results of this theory agree with Loewy’s model. A
convenient feature of this theory is that it can be easily coupled
with Floquet solution of the equations of motion in forward � ight.
A shortcoming of the theory is that it cannot model the important
effect of blade-vortex interaction, which can be captured only by
free wake models.

2. Separated-Flow Unsteady Aerodynamics—Dynamic Stall
Dynamic stall is a strong nonlinear unsteady aerodynamiceffect

associated with � ow separation and reattachment, which plays a
major role in aeroelastic stability and response calculations. Good
descriptions of dynamic stall can be found in Refs. 17 and 19. In
the early years dynamic stall was not well understood, and models
that would allow one to incorporate dynamic stall in an aeroelastic
analysis were not available.

Dynamic stall is associatedwith the retreating blade and borders
on the reversed � ow region, as shown in Fig. 12. For such condi-
tions the angle of attack of the blade cross section can be very large.
Although the torsional response of the blade is relatively low under
normal conditions, at the � ight envelope boundary,where dynamic
stall effects are pronounced, large transient-torsionalexcursion can
be excited, accompaniedby low negative damping in pitch. This, in
turn, generates excessive control and blade vibratory loads, which
impose speed and load limitations on the rotor system as a whole. It
can also cause stall � utter. Because of its importance,dynamic stall
has been the subject of a large number of studies, which have led to
a good physical understandingof this complex aerodynamiceffect.
Some of the earlier work on this topic was done by Ham,67 and sub-
sequent experimentaland analyticalwork of Carr68 and McCroskey
and his associates69 has led to improved physical understanding
of this phenomenon. Attempts at simulation of dynamic stall us-
ing computational � uid dynamics have not been successful in re-
producing the quantitative characteristics at operational Reynolds
numbers. The need to incorporate the important dynamic-stall ef-
fects in rotary-wing aeroelastic stability and response calculations
has led to the development of semi-empirical dynamic-stall mod-
els that capture the most important features of dynamic stall with

Fig. 12 Schematic illustration of reversed � ow region and dynamic-
stall region.

reasonableaccuracy.Semi-empiricalmodels can reproduce the hys-
teretic lift, moment and drag curves for a given airfoil quite accu-
rately. These models have a number of common features. They are
intended to incorporate two-dimensional airfoil unsteady aerody-
namic effects in analytical studies in the time domain, and they are
suitable for stepwise numerical integration in time. All models are
empirical, and various free parameters in the model are determined
by � tting the theory to experimental data obtained from oscillating
airfoil tests.

Several dynamic-stall models have been developed. However,
only two have withstood the test of time and are in widespread
use currently. These are the ONERA and the Leishman–Beddoes
dynamic-stallmodels. Both distinguishbetween two principal � ow
regions: the attached, and the separated-� ow regions.

The ONERA model developed by Dat,51 Dat et al.,70 and Tran
and Petot71 is based on the time-domain representationof the airfoil
section operating before, during, and in the poststall regime while
it performs essentially arbitrary motions. The model utilizes the
properties of differential equations to simulate the different effects
that can be identi� ed on an oscillatingairfoil, such as pseudoelastic,
viscous and inertial effects, and the effect of the � ow time history.
The theoryalso recognizesthat, in the linearrangeof airfoilmotions,
Theodorsen’s lift-de� ciency function represents the aerodynamic
transfer function for the airfoil, relating the downwash velocity at
the three-quarter chord to circulatory lift. Furthermore, the theory
is based on approximating the aerodynamic transfer function by
rational functions. In the nonlinear range the model consists of a
system of differential equations containing unsteady linear terms
whose coef� cients are functions of the angle of attack and steady-
� ow nonlinear terms.

The ONERA model has beenmodi� ed and improved by Rogers72

and Peters.73 These changeshaveproduceda modi� ed theory,which
in the attached-� ow region is consistent with classical unsteady
aerodynamics and in which circulation has been introduced as a
new dependent variable. The ONERA model contains an approxi-
mate correction for compressibility and no correction for the effect
of sweep. The most recent version of this model was documented
by Petot.74 The coef� cients in the equations of this model are deter-
mined by parameteridenti� cation from experimentalmeasurements
on oscillatingairfoils.The model requires22 empirical coef� cients.
Figure 13 shows typicalhystereticlift and moment coef� cients com-
puted with the ONERA dynamic-stall model for a NACA 0012
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Fig. 13 Typical hysteretic lift and moment coef� cients computed with
the ONERA dynamic-stall model.

airfoil at M D 0:379, k D 0:075, and a time-varying angle of attack
® D 10:3 deg C8:1 sin !t .

The Leishman–Beddoes model was developed originally by
Beddoes in the mid-1970s.75;76 Subsequently, it was extended by
Leishman,77¡79 and it has become a comprehensive and mature
model. The model is capableof representingthe unsteady lift, pitch-
ing moment, and drag characteristics of an airfoil undergoing dy-
namic stall. This model consists of three distinct components: 1) an
attached-� ow model for the unsteady linear airloads,2) a separated-
� ow model for the nonlinear airloads, and 3) a dynamic-stallmodel
for the leading-edgevortex-inducedairloads. The model contains a
rigorous representationof compressibility in the attached-� ow part
of the model, using compressible indicial response functions. The
treatment of nonlinear aerodynamic effects associated with sepa-
rated � ows are derived from the Kirchoff–Helmholtz model to de-
� ne an effectiveseparationpoint that can begeneralizedempirically.
The model uses relatively few empirical constants,with all but four
derived from static airfoil data.

3. Wake Models
The description of aerodynamic loading is incomplete without

mentioning wake models. A detailed description of wake models
and their historical development is outside the scope of this paper,
but can be found in Chapter 10 of Ref. 19. Accurate modeling of
the wake and, in particular, free-wakemodels plays a critical role in
aeroelasticresponseand bladevibratoryload calculations.However,
it appears that accurate modeling of the wake is less important for
aeroelastic stability analyses.

D. Development of Systematic Methods for Formulating and Solving
Rotary-Wing Aeroelastic Problems
1. Formulation of Equations of Motion

Formulationof completeaeroelasticequationsof motion requires
a combination of structural, aerodynamic, and inertia terms. It is in
this area that very signi� cant advances have been made compared
to the early period when equationsof motion were formulatedusing
ad hoc methods augmentedby good physical insight.The structural

and aerodynamic ingredients have been described in the preceding
sections.The inertia loads are obtained in a straightforwardmanner
by using D’Alambert’s principle and combining it with Newton’s
Second Law. The transformation between the undeformed and de-
formed states representedby Eq. (5) determines the position vector
of a mass point in the deforming blade, and the acceleration vector
is given by using vector mechanics:

a D RR C 2­ £ R C P­ £ R C ­ £ .­ £ R/ (13)

Although the derivation of the inertia terms is conceptually sim-
ple, the practical implementation can be tedious from an algebraic
point of view, particularly when one is interested in coupled ro-
tor fuselage aeromechnical problems. In the 1970s and early 1980s
equations of motion used to be derived manually leading to long
and algebraically cumbersome expressions. Examples illustrating
the complexity of the equations for isolated blade aeroelastic prob-
lems in forward � ight80;81 or coupled rotor-fuselage problems82¡84

clearly indicate the tediousnature of such tasks, even when ordering
schemes are used. Furthermore,when advancedaerodynamicssuch
as dynamic-stallor wake models are used82 it is impossibleto obtain
explicit equations of motion.

The equations are partial differential equations, and their solu-
tion requiresdiscretizationto eliminate the spatial dependence.Dis-
cretizationand the solutionof the equationrequiresfurtheralgebraic
effort. Finally, the � nite element method, which was � rst used for
a rotary-wing aeroelastic problem in 1980 (Ref. 85) and has be-
come the most effective spatial discretization and solution method
currently used in RWA, tends to obscure the precise boundaries
between problem formulation and solution.

Since the early 1970s, two distinct approaches for formulating
isolated blade or coupled rotor-fuselage equations of motion have
emerged.The � rst approach is usually denoted the explicit approach
becauseit leads to a set of detailedaeroelasticequationsofmotion in
which all of the terms (aerodynamic, structural,and inertial) appear
in explicit form. Explicit equations are usually derived using order-
ing schemes to neglect higher-order terms in a systematic manner.
The outcome of this process consistsof a set of nonlinearpartialdif-
ferential equations in the space and time domain. These equations
can also contain integralexpressionscausedby centrifugaland other
terms. An alternative approach can be denoted as the implicit ap-
proach. In this approach the detailed expressions of the aeroelastic
equations of motion are avoided; instead, the aerodynamic, iner-
tia, and structural operators are usually generated in matrix form
inside the computer. When this approach is used, the boundaries
between the formulation and solution process, particularly in spa-
tial discretization, tend to be blurred. When the implicit approach
is used, ordering schemes are no longer required. Furthermore, the
implicit approach frequently mandates iterative solutions. For con-
venience and clarity the implementation of these two approaches
will be discussed by describing their application to two separate
classes of problems, namely, isolated-blade problems and coupled
rotor-fuselageproblems.

Isolated-bladecase. A good example of explicit formulation of
equations of motion for the case of hover can be found in Refs. 41
and 54. Explicit formulations for forward � ight can be found in
Refs. 80 and 81. The algebraic task for deriving such equations
was too cumbersome, and, therefore, with increases in computer
power these tasks have been relegated to the computer. One of the
� rst derivations of a set of coupled � ap-lag-torsional equations of
motion for a hingeless rotor blade in forward � ight, using a special
purpose symbolic processor written in FORTRAN, was presented
by Reddy and Warmbrodt.86

In the mid-1980s LISP workstations utilizing the MACSYMA
symbolicmanipulativepackagebecamecommerciallyavailableand
were used to derivecoupled � ap-lag-torsionalequationsfor a hinge-
less blade in hover, including terms up to the third order.45;87;88 By
the early 1990s regular workstations could be used in conjunction
with MACSYMA to obtain explicit equations for hingeless rotor
blades in forward � ight in a routine manner.89;90
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Another approach for avoiding the algebraic derivation associ-
ated with the formulation of the RWA problem is to use the � nite
element approach. For this approach the equations of motion are
generated in a numerical form, as part of the solution process. The
approach can be used to obtain either explicit or implicit formu-
lations and solutions. This approach will be described later in this
paper because the � nite element formulation is strongly linked to
the solution methodology.

Coupled rotor-fuselage case. Formulation of coupled rotor-
fuselage equations for a typical con� guration, like that shown in
Fig. 8, has similarities to the isolated-blade problem, although a
numberof substantialdifferencesdo exist: 1) the equationsare more
complicated because of numerous additional terms associated with
the fuselage rigid-body degrees of freedom, which contribute to
the complexity of the inertia and aerodynamic loads; 2) if ordering
schemes are used, combined with an explicit formulation, a mod-
i� ed form of the ordering scheme has to be used to restrict the
equations to a manageable size; 3) rotor-fuselage coupling has to
be performed in a careful and systematic manner; and 4) when the
fuselage itself is also consideredas a � exiblebody, a furthercompli-
cation in problem formulation emerges. Again, like in the isolated
blade case, both explicit and implicit formulations of the coupled
rotor-fuselageproblem are available.

The early derivations, developed in the late 1970s, for this class
of problems were explicit, usually done manually and resulted in
lengthyequations.References 91 and 92 good examples of coupled
rotor-fuselageequations in hover, whereas Ref. 84 is representative
of typical equationsfor forward � ight. In the same period Johnson93

has developed a coupled rotor-fuselage model suitable for forward
� ight using an implicit approach. In the studies just mentioned, the
fuselage was assumed to be rigid. In the mid-1980s there was a
need to obtain coupled rotor-fuselage equations capable of mod-
eling single- and twin-rotor con� gurations in hover and forward
� ight, and thus these were derived and solved in Refs. 83 and 94.
The fuselage was modeled as a � exible beam with bending and
torsional degrees of freedom. This study represents one of the most
complicatedexplicit sets of equationsderivedmanually.Three years
later they were rederived using MACSYMA and found to be error
free.

Obviously, this class of problems is an ideal candidate for sym-
bolic derivationof equations motion. The � rst explicit formulations
based on symbolic manipulation were carried out in Ref. 95.

An interestingimplicit approach,based on a hybrid � nite element
combined with a primitive multibody formulation, was used in the
GRASP program.96 The required matrix elements were generated
by numerical evaluationof hierarchicalexpressions in the code. As
one of the � rst multi-� exible-body approaches applicable to rotor-
craft,GRASP possesseda lot of modeling � exibility.Unfortunately,
however, the only version released until the time development was
halted was limited to the hovering � ight condition.

2. Methods of Solution
The solution of rotary-wing aeroelastic stability and response

problems is usually carried out in two stages.The � rst stage consists
of the spatial discretizationof the equations of motion followed by
a solution in the time domain. In the second stage, namely, the
time-domain solution, two different approaches are possible; one
can solve the equation in a blade-� xed, rotating coordinate system
or in a hub-� xed, nonrotatingcoordinate system. One also needs to
distinguishbetween solutions for hover and those for forward � ight.

Spatial discretization. The � rst step in the solution of rotary-
wing aeroelasticstabilityor responseproblems is eliminationof the
spatial dependencein the nonlinearpartial differentialequations(or
appropriateenergy expressions),which describe the system. Appli-
cation of suitable discretizationmethods will yield a set of coupled,
nonlinear,ordinary differentialequations in the time domain. Three
approaches for spatial discretizationhave been used: 1) spatial dis-
cretization based on global methods, 2) spatial discretizationbased

on the � nite element method, and 3) spatial discretizationbased on
matrix method. The third approach is mentioned only for historical
reasons. This approach has not withstood the test of time and will
notbe discussedhere, but informationon this approachcan be found
in Ref. 9.

During the 1970s, the preferred discretization methods were
global, such as the well-knownRayleigh–Ritz or Galerkinmethods,
as shown in Refs. 3, 54, 86, and 97 based on free-vibration modes
of the rotating blade. For hover, both coupled and uncoupledmodes
havebeenused,where thecouplingofmodes is causedby the collec-
tive pitch setting. For forward � ight the use of uncoupled modes is
more convenient because cyclic pitch introduces time-varyingcou-
pling. Discretization based on global modes is cumbersome and is
besthandledby symboliccomputationor numericalimplementation
using Gaussian quadrature.

Since 1980, the � nite element method has emerged as the most
versatile spatial discretization method. In addition to eliminating
the algebraic manipulative labor required for the solution of the
problem, it also serves as the basis for the implicit formulations
discussed in the preceding section. Furthermore, the � nite element
method is ideally suited for modeling composite rotor blades and
complicated redundant structural systems such as encountered in
bearingless rotors. For rotary-wing aeroelastic problems two ap-
proaches have been used: 1) weighted residual Galerkin-type � nite
element methods and 2) local Rayleigh–Ritz � nite element method
using conventional as well as higher-order elements. Recognizing
that the rotary-wing aeroelasticproblem is geometricallynonlinear,
it shouldbe emphasized that � nite element formulationfor this class
of problems is more intricate than its � xed-wing counterpart.

The � rst � nite element treatment of the rotary-wing aeroelastic
problemin hover and forward � ight, usinga Galerkin-typeweighted
residual � nite-element method, can be found in Refs. 85, 98, and
99. First, the coupled � ap-lag problem was treated,85;98 and subse-
quently the coupled � ap-lag-torsional problem was formulated.99

The geometry for this problem is shown in Fig. 14. The bending de-
grees of freedom were interpolated using cubic (or Hermite) inter-
polation,whereas quadratic interpolationwas used for the torsional
degree of freedom (not shown). In Refs. 85, 98, and 99 an explicit
formulation was used; however, later the same method was used in
an implicit formulation to solve the coupled � ap-lag-torsionalprob-
lem of straight and swept-tip hingeless rotor blades in hover and
forward � ight.100;101

The localRayleigh–Ritz type � nite elementmethodwas � rst used
by Sivaneri and Chopra102;103 to study the behavior of hingeless102

and bearingless103 rotors. Again, the bending degrees of freedom
were treated using Hermite interpolation,and torsion was treated by

Fig. 14 Geometry of the elastic axis of the hingeless deformed blade
and schematic representation of the � nite element model.
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linear interpolation.102 Ritz-type higher-order � nite elements were
combined with an implicit formulation and used in the GRASP
program to solve aeroelastic problems in hover.96

Time-domain solutionof the equations. After spatial discretiza-
tion the equations of motion are reduced to nonlinear ordinary dif-
ferential form. In forward � ight these equations have periodic coef-
� cients. The mathematical structure of these general equations can
be written in the following symbolic form4:

[M]fRqg C [C.Ã/]fPqg C [K .Ã/]fqg D fFNL.Ã; q; Pq/g (14)

where it is understoodthat thematrices[M ] and [C.Ã/] containboth
aerodynamicand inertial contributions,whereas the matrix [K .Ã/]
contains aerodynamic, inertial, as well as structural contributions.
All nonlinear effects are combined in a vector fFN L .Ã; q; Pq/g.

When time-domain unsteady aerodynamics such as Eqs. (12) are
used, these equations have to be appended to Eqs. (14) and solved
jointly.61 When discussing methods of solution for Eq. (14), it is
convenient to consider hover and forward � ight separately. It is
also useful to distinguishbetween isolated-bladeand coupled-rotor-
fuselage analyses.

Consider the � rst isolated blade case in hover. For this case
Eq. (14) has constant coef� cients. Linearizing the equationsabout a
nonlinearequilibriumpositiongives a goodapproximationto aeroe-
lastic stability boundaries.3;4;39;54;85 Thus, it is common practice to
write perturbation equations that are linearized about the nonlinear
static equilibrium position. This equilibrium position is obtained
from the solution of a system of a system of nonlinear algebraic
equations.These equations are usually solved by Newton–Raphson
iteration.3;4;104 Lack of convergencecan be indicativeof divergence.
Stability boundaries are obtained from solving the standard eigen-
value problem for the linearized system. The real part of the eigen-
values determines the aeroelastic stability boundaries of the blade.
This approachalso predicts reliable stabilityboundariesin the pres-
ence of static stall.105 This basic approach has evolved during the
1970s and has been used ever since then without any signi� cant
changes.

Consider next the isolated blade in forward � ight, and assume
that dynamic-stall effects are neglected. The aeroelastic stability
and response problem is based again upon Eq. (14). Reliable solu-
tions for stability can be obtained by linearizingthe nonlinear equa-
tions of motion about an appropriateequilibriumposition.82;86;97;106

In forward � ight the appropriate equilibrium position is a periodic
solution of Eq. (14). Calculation of the time-dependent periodic
equilibrium position, representing the blade response solution, is
inherently coupled with the trim state, or � ight mechanics, of the
complete helicopter in forward � ight. The degree of sophistication
with which this coupling is accomplished can affect the accuracy
of the aeroelastic analysis. The trim state of a typical helicopter is
depicted in Fig. 15.

Two different trim procedures4;97;106 have been used: 1) propul-
sive trim, which simulates actual forward � ight conditions where

Fig. 15 Geometry showing trimmed aircraft in propulsive trim.

horizontal and vertical force equilibrium is maintained and zero
pitching and rolling moments are enforced,and 2) moment or wind
tunnel trim, which simulatesconditionsunderwhich the rotorwould
be tested in a wind tunnel.Horizontal and vertical force equilibrium
is not enforced because the helicopter is mounted on a supporting
structure. Therefore, only the requirement of zero moments on the
rotor is imposed.

Initially, the trim proceduresused in the mid 1970s to mid 1980s
coupled trim only partially to the aeroelastic analysis, and the � rst
time trim requirements on all three � ap, lag, and torsional degrees
of freedom were imposed was in Ref. 86. However, from the late
1980s onward coupled trim/aeroelastic analyses have been used in
a routine manner.

The most widely used method for solvingthe forward � ight prob-
lem is based on the direct solutionof Eq. (14) in the rotating system,
by using the theory of differential equations with periodic coef� -
cients. This approach is facilitated by rewriting Eq. (14) in � rst-
order, state-variable form

f Py.Ã/g D fz.Ã/g C [L.Ã/]fy.Ã/g C fN .Ã; y; Py/g (15)

where fz.Ã/g and [L.Ã/] areperiodicmatriceswith common period
2¼ , and fN .Ã; y; Py/g represents the nonlinear contributions, and

fy.Ã/g D
Pq.Ã/

¢ ¢ ¢ ¢ ¢ ¢
q.Ã/

(16)

It is evident from Eq. (15) that the aeroelasticstability and response
problem are coupled. Therefore, solutions have to be obtained in
two stages.4;97 First the nonlinear time-dependentequilibriumposi-
tion of the blade is obtained, and next the equations are linearized
about the time-dependentequilibrium position by writing perturba-
tion equation about the periodic nonlinear equilibrium.This second
stage yields a linear periodic system for which blade stability can be
obtained using Floquet theory. In the early years there was consid-
erable confusion regarding the treatment of equationswith periodic
coef� cients. One of the � rst papers to point out that calculation of
the Floquet transition matrix at the end of one period, using numer-
ical integration, is an effective way for dealing with � apping dy-
namics of a rotor in forward � ight was published in the early 1970s
(Ref. 107).A couple of years later it was shown108 that the transition
matrix at the end of a period is a key ingredient for examiningaeroe-
lastic stability in forward � ight. An effective numerical technique
for calculating the transition matrix at the end of one period was
also presented.108 This approach was generalized in a later paper109

that presented very ef� cient numerical techniques for dealing with
periodic systems by using Floquet theory. Later, the methods devel-
oped for the stability of linear periodic systems were extended to
obtain the response for the linear case, as well as the nonlinear case
using quasilinearization.97 The importanceof the treatmentof equa-
tions with periodic systems has played an important role in RWA
in forward � ight and numerous papers on this topic have been writ-
ten since the 1970s, including several survey papers.110;111 Three
distinct methods for calculating the nonlinear equilibrium position
associated with Eq. (15), about which the perturbation equations
are linearized, have emerged. These are quasilinearization,97 peri-
odic shooting,112 and the � nite element method applied in the time
domain.113

An alternative approach to the solution of Eq. (14) is based on
the introductionof the multibladecoordinate transformation,which
transforms the variables fqg from the rotating,blade-� xed reference
frame, to a nonrotating, hub-� xed reference frame.66;110;114;115 Fol-
lowing Hohenemser and Yin,115 these coordinates are frequently
used in rotor dynamics. Use of such a transformation implies that
the blade degrees of freedom in the blade-� xed system are re-
placed by a set of nonrotating coordinates that describe the mo-
tions of the hub plane and its deformation in a hub-� xed system.
In a symbolic form the multiblade coordinate transformation is
written as

fqg D [B.Ã/]fXg (17)
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where fqg are the original coordinates in Eq. (14) and fXg are the
multiblade coordinates. A convenient stage to apply the multiblade
coordinates is after the process of linearization. In such cases for
rotors that have three blades or more, the multiblade coordinate
transformationenables one to replace the periodic system by a con-
stant coef� cient approximation, which can be treated by conven-
tional eigenvalue calculation methods. Such an approximation is
usually reliable61;62 for advance ratios ¹ < 0:25, as indicated by
research conducted in the early 1980s. Multiblade coordinates are
convenient to use with dynamic in� ow.

The use of multiblade coordinate transformation is particularly
useful for coupled rotor-fuselageproblems in hover. In this case use
of these coordinates eliminates the periodic coef� cients from the
equations of motion, for rotors having three blades or more.83;94;115

Next, solution of the coupled rotor-fuselage problem in forward
� ight is brie� y discussed. The equations of motion for this prob-
lem have again the mathematical form representedby Eq. (14). For
level � ightconditionswith constantadvanceratio¹, bladenonlinear
equilibrium, in forward � ight, is described by Eq. (14). Helicopter
trim and the equilibrium solution are extracted simultaneously us-
ing a numerical harmonic balance solution.116;117 The equations are
linearized by writing appropriate perturbation equations. After lin-
earizationa multibladecoordinatetransformationis introduced.The
original equation, Eq. (14), has periodic coef� cients with a fun-
damental nondimensional frequency of unity; however, the trans-
formed system has periodic coef� cients with a higher fundamental
frequency. These higher-frequency periodic terms have a reduced
in� uence on the behavior of the system and can be ignored in some
analyses at low advance ratios. Once the transformation is carried
out, the system is rewritten in � rst-order form

f Pxg D [A.Ã/]fxg (18)

where fxg contains fX g and f PX g.
The fundamental frequency of the coef� cient matrices depends

on the number of rotor blades Nb . For an odd-bladed system the
fundamental frequency is Nb per revolution, whereas for an even-
bladed system the fundamental frequency is Nb=2 per revolution.
Stability can now be determinedusing either an eigenvalueanalysis
(for hover) or Floquet theory for the periodic problem in forward
� ight. An approximate stability analysis in forward � ight is also
possible by performing an eigenanalysison the constant coef� cient
portion of the system matrices.

When strong nonlinearities,such as dynamic stall, are present in
the equations, direct numerical integration is used to obtain blade
response. Representative examples of the solution of blade dynam-
ics in the presence of aerodynamic nonlinearities can be found in
Refs. 118 and 119. Finally, it should be mentioned that when us-
ing dynamic-stall models the procedure described in this section,
consisting of linearizing the perturbation equations about a non-
linear time-dependent equilibrium position and extracting stability
information using Floquet theory, might not be reliable.

E. Flap-Lag Problem in Hover and Forward Flight
One of the important contributions of the research conducted in

the early 1970s was the fundamental understanding of the impor-
tance of the lead-lag degrees of freedom in rotary-wingaeroelastic-
ity. It was shown that the � ap-lag type of instability is a result of
destabilizing inertia and aerodynamic coupling effects associated
with the two bendingmotions present in this problem. It stems from
the low aerodynamic damping in the lead-lag motion.

The best treatment of the � ap-lag problem in hover was by
Ormiston and Hodges,120 who used a simple centrally hinged,
spring-restrainedmodel of a hingeless blade, similar to that shown
in Fig. 16, except that the hinge offset was zero and the blade was
torsionally rigid. Using a linear analysis, they have shown that this
instability is eliminated by elastic coupling, caused by the pitch
setting on the blade, which couples blade bending in and out of
the plane of rotation. There was very little awareness of the im-
portance of this effect on hingeless blade stability. The treatment
of the � ap-lag problem, based on a � exible hingeless blade model,

Fig. 16 Offset-hinged spring restrained model of a hingeless blade.

Fig. 17 Typical � ap-lag stability boundary in hover without elastic
coupling and zero structural damping.

using one elastic mode for each degree of freedom, and a nonlin-
ear analysis conducted in the same time period,39;121 showed that
small amounts of structural damping (1% or less) are also suf� -
cient to eliminate this instability, even when elastic coupling is set
equal to zero. Figure 17 depicts a typical stability. Combinations
of rotating � ap and lag frequencies N!F1 and N!L1 inside the ellipse-
like region represent unstable blade con� gurations for values of µc

given on the curves. Here, µc is the critical collective pitch setting
at which the linearized system becomes unstable.For the fully non-
linear system121 regions of stable and unstable limit cycles are also
shown in Fig. 17. Structural coupling Rc D 1:0, or small amounts of
damping completely eliminate the unstable, ellipse-like regions for
practical values of blade frequencies.

In addition to the theoretical studies on the � ap-lag type of insta-
bility, Ormiston and Bousman105 have performed an experimental
study that validated the theoretical results. Their � ndings indicated
that under static-stallconditionsan unexpectedtype of blade motion
instability for torsionally rigid hingeless rotors was encountered.
Elastic coupling was not successful in eliminating this type of in-
stability, as indicated in Fig. 18. Similar conclusionswere obtained
by Huber.122

The � ap-lag stability problem, without elastic coupling, exhibits
exaggerated sensitivity to small effects that in� uence the lead-lag
damping. For example, although dynamic in� ow can affect � ap-
lag stability when elastic coupling is set equal to zero, with elastic
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Fig. 18 Stall-induced � ap-lag instability; dimensionless lead-lag
damping vs collective pitch (300 rpm, Rc = 0.96, ¹!F1 = 1.62, and ¹!L1 =
1.28); O, experimental data.

Fig. 19 Convergence of � ap-lag stability boundaries in hover, when
the number of modes and elements is varied; region above curves is
unstable: ¾ = 0.10, ° = 5.0, and ¹!F1= 1.15.

coupling present the effect of dynamic in� ow on this instability in
hover is small.61;117 An interesting result85 based on a � nite ele-
ment model for a hingeless blade, shown in Fig. 14, is presented in
Fig. 19. The blade undergoes only � ap and lag motion, and each
type of motion is represented by a varying number of elastic global
modal degreesof freedom(between 1 and 3, per type of motion): the
unstable region of the stability boundaries is denoted by the letter
U on the boundary.The � gure illustrates the combined effect of the
number of modes used in the analysis and the elastic coupling pa-
rameter Rc : when Rc D 1:0, elasticcouplingis present;when Rc D 0,
elastic coupling is neglected;and values of 0:0 < Rc < 1:0 represent
varyingamounts of elastic coupling.From Fig. 19 for Rc D 0:0, it is
always the fundamentallead-lagmode thatyieldsthe lowest stability
boundary, and for Rc D 1:0 the � ap-lag instability is virtually elim-
inated. The interesting results shown in the � gure are the unstable
regionsassociatedwith the secondlag mode, which for intermediate
values of the elastic coupling parameter Rc D 0:60 becomes unsta-
ble at lower values of the critical collectivepitch angle than the � rst
lag mode. The implicationof this result is that the second elastic lag
mode should be retained in the stability analysis of hingeless and
bearingless rotor blades.

After understanding the hover problem, several studies on the
� ap-lagstabilityproblemin forward � ightwere completed.106;108;123

These studies were also performed on both the offset-hingedspring
restrained model of a hingeless blade123 as well as the fully elas-
tic blade.106;108 Among these, Ref. 106 was the most realistic be-
cause it contained the effects of trim and reversed � ow, which affect
blade behavior in forward � ight. Later studies have illustrated the
sensitivity of � ap-lag stability in forward � ight61;62 to dynamic in-
� ow. This sensitivity,which is associated primarily with regressing
mode damping, was exaggerated because of the absence of elastic
coupling. Subsequently, a theoretical and experimental study64 has
shown that with elastic coupling the effect of dynamic in� ow is
relatively small.

This descriptionindicates that it took more than a decade to com-
pletely understand � ap-lag stability in hover and forward � ight. In
hover it is a fairly weak instability, which can be eliminated by
elastic coupling and small amounts of damping. A stronger insta-
bility can be triggered on highly loaded rotors operating in stall. In
forward � ight the problem is sensitive to small terms; and, as will
be shown next, in forward � ight it is safer to consider the coupled
� ap-lag-torsionalproblem.

F. Flap-Lag-Torsional Problem in Hover and Forward Flight
The coupled � ap-lag-torsional aeroelastic problem provides a

more realistic representation of hingeless blade behavior than the
� ap-lag problem. However, understanding the � ap-lag instability
has an important implication for the complete coupled � ap-lag-
torsional behavior. The � rst basic studies on coupled � ap-lag-
torsionalaeroelasticbehaviorof hingelessrotorbladesin hoverwere
carried out between 1973 and 1980 (Refs. 54, 104, 122, and 124).
This research has shown that soft-in-plane hingeless rotor blades
are usually stable. A typical � ap-lag-torsional stability boundary
taken from Ref. 104 is shown in Fig. 20. The main item of interest
in this � gure is the bubble-like region of instability present at low
values of collective pitch. This instability occurs only in the pres-
ence of precone and is a � ap-lag type of instability.Sometimes it is
called the precone-induced� ap-lag instability. It was also obtained
in Ref. 54. The unstable region decreases as the fundamental tor-
sionalfrequency N!Á1 is increasedfrom4.5 to 6.0per revolution.Very
small amounts of structural damping in lag (´SL1 D 0:0025, 0.25%
of critical in lag) reduce this unstable region for the torsionally soft
blade and completely eliminate it for the stiffer blade ( N!Á1 D 6:0).
Other results not shown here indicate that droop and sweep (see
Fig. 3) can have a strong bene� cial as well as detrimental effect
on the hingeless blade stability. In addition, offsets between cross-
sectional elastic axis, aerodynamic center, and center of mass can
also in� uence blade stability. A similar study clarifying the effects

Fig. 20 Coupled � ap-lag-torsional stability boundary illustrating
combined effect of precone and structural damping for Rc = 1.0, ¯p =
3 deg; XA = 0, ° = 9.0; and ¹!F1 = 1.14.
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Fig. 21 Blade stability, lag degree of freedom, soft-in-plane con� gura-
tion, effect of nonlinear terms, and comparison of � ap-lag and � ap-lag-
torsional analysis (CW = 0.005, ¹!L1 = 0.732, ¹!T1 = 3.17, ° = 5.5, and ¾ =
0.07).

of modeling assumptions on the coupled � ap-lag-torsional stabil-
ity of a stiff-in-plane hingeless blade, including comparisons with
experimental data, was conducted in Ref. 125.

Other results, not shown here, also indicate that unsteadyaerody-
namic effects,wake, and compressibility53;126 can have a signi� cant
effecton thecoupled� ap-lag-torsionalaeroelasticstabilityof hinge-
less rotor blades in hover. Another study127 has shown that by com-
bining three-dimensional tip loss and unsteady in� ow effects with
a conventional moderate-de� ection theory remarkable agreement
between theoretical and experimental results was obtained. Most
analyses described in this section combine geometricallynonlinear
structural models of the blade with linear aerodynamic theories.
Therefore, an important key to substantial improvements in aeroe-
lastic modeling capability of rotor blades is linked to improving the
unsteady aerodynamic models.

Studies aimed at modeling coupled � ap-lag-torsionalbehavior in
forward � ight started to appear in the early 1980s and continued
throughout most of the decade. The � rst comprehensive study of
the coupled � ap-lag-torsional dynamics of hingeless rotor blades
in forward � ight was presented in Ref. 97. This study, based on
the equations derived in Ref. 81, clearly demonstrated the role of
geometric nonlinearitiesand trim for this important problem. It was
also concluded that usually forward � ight is stabilizing for soft-in-
plane blade con� gurations. However, forward � ight caused severe
degradation in stability of stiff-in-planecon� gurations.

Figure 21, from Ref. 97, illustratesa number of important effects.
The label CFLT on the curves denotes the results from coupled � ap-
lag-torsional analysis. The label � ap-lag denotes results obtained
from a � ap-lag analysis. The full lines are results from a converged
nonlinear analysis, the dashed lines are results for the case when
geometricalnonlinearitiesare neglected.The results shown, depict-
ing the real part of the characteristic exponent for lag as a function
of ¹, are for propulsive trim. From the � gure it is evident that blade
stability increases with forward � ight for soft-in-plane con� gura-
tions. The importance of the geometrically nonlinear terms is also
evident from the � gure. Comparing the stability margin (as repre-
sented by ³L AG ) from a � ap-lag analysis with that obtained from a
� ap-lag-torsional analysis it is clear that damping from a � ap-lag
analysis is 250–300% lower than that obtained from the accurate
� ap-lag-torsional analysis. Therefore, � ap-lag analyses in forward
� ight can be misleading and should be avoided in trend studies.

Subsequent research on hingeless rotor stability in forward
� ight,128 as well as more recent research,86;129 has con� rmed the
conclusions presented in Ref. 97. In Refs. 128 and 129 the effect
of dynamic in� ow was also included and was found to be relatively
small. All of the studies mentioned indicated that stiff-in-planecon-
� gurations are destabilized by forward � ight, whereas the stability
of soft-in-planecon� gurations increases with forward � ight.

Fig. 22 Effect of number of degrees of freedom used in trim analysis
on lead-lag damping vs ¹ (¹!L1 = 1.40, ¹!T1 = 3.0, ¹!F1 = 1.15, ¾ = 0.10,
and Rc = 1.0) in propulsive trim.

The results presented in Ref. 97 were based on � ap trim only. In
Ref. 86, the in� uence of this approximate trim procedure on blade
stability was determined. It is evident from Fig. 22, taken from
Ref. 86, that the effect of coupled trim on blade stability is small.
The destabilizing effect caused by forward � ight on stiff-in-plane
rotors is also evident from Fig. 22.

The important trend that emerged from the studies on � ap-lag-
torsional stability of hingeless blades in forward � ight was that
forward � ight destabilizes stiff-in-planecon� gurations.

G. Air and Ground Resonance
The ground-resonance problem of articulated rotors has been

quite well understoodas indicatedearlier in this paper. When asym-
metry in the rotor support system or in the blades themselves exists,
the classical treatment36 is inadequate.Hammond130 has considered
the ground resonance of an articulated rotor with one lag damper
inoperative, using Floquet theory. This was also the � rst paper to
demonstratetheconvenientapplicationofFloquet theory to the class
of coupled rotor-fuselage problems involving asymmetry. Dissim-
ilarities introduce periodic coef� cients in the equations of motion.
Blade-to-bladedissimilaritieshave been consideredby McNulty.131

The effect of nonlinearities on ground resonance has also been
considered. Bellavitta et al.132 considered the ground resonance of
an articulatedrotor helicopterwhere the landing gear had nonlinear
characteristics; the solutions were obtained using direct numeri-
cal integration. The in� uence of nonlinear damping on helicopter
ground resonancewas studied by Tang and Dowell.133 The analyti-
cal model includeda three-bladed,articulatedrotor,with each blade
having only lead-lag motion, combined with a fuselage that could
pitch and roll. The formulation contains both a nonlinear damper
and a nonlinear landing gear damping. The analytical results were
comparedwith experimentsconductedon a model, and good agree-
ment was obtained.

There is also evidencethat the aerodynamicloadingon the blades
can have a signi� cant role on the ground-resonanceproblem of hin-
geless and bearinglessrotors.For such con� gurationsaeromechani-
cal studies frequently involve both air and ground resonance,which
are considered next.

The advent of hingeless and bearingless rotors has generated
strong interest in analyses capable of modeling coupled rotor-
fuselage problems. Several studies conducted in the late 1970s and
1980s have made important contributionstoward the understanding
of air-resonanceproblems.

One of the � rst comprehensive theoretical studies of the aerome-
chanical stability of bearingless rotors was conductedby Hodges134

using the computer program FLAIR, based on the mathematical
model describedin Refs. 91 and 92. This study134 and its companion
one135 deal mostly with soft-in-plane con� gurations using quasi-
steady aerodynamics. The analytical results were also compared
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with experimental data on bearingless main rotors, and good corre-
lation was obtained. FLAIR was also used to study hingeless rotor
aeromechanicalstabilityby comparingthe theorywith experimental
data obtained by Bousman.136 Overall agreement between theoret-
ical predictions and experimental data was good. When FLAIR is
used for hingeless rotors, it uses an offset-hinged,spring-restrained
model.

Bousman conducted a careful experimental investigation of the
effectof elasticcouplingson the aeromechanicalstabilityof a hinge-
less rotor helicopter.136 Five different con� gurations were tested to
determine to what extent pitch-lag couplingand structural coupling
can successfully stabilize the air-resonancemode. This experimen-
tal data set has been widely used during the last decade as a basis
against which many analytical models have been validated. These
experimental results were compared � rst against theoretical results
of Hodges.91;134 The measured lead-lag regressing mode damping
agreed well with theory. Comparison of the theory and experiment
for the damping of the body modes showed signi� cant differences
that were attributed by Bousman to dynamic in� ow.

Johnson137 compared Bousman’s results136 with analytical pre-
dictions of ground resonance,using the model described in Ref. 93.
The calculationswere performed with and without dynamic in� ow.
Use of dynamic in� ow improved the correlationwith experimental
data. He obtained the remarkable result that in� ow dynamics in-
troduces an additional “in� ow mode,” which explained previously
unresolvedquestions about the correlationbetween test and theory.

Venkatesan and Friedmann83;94 developeda mathematicalmodel
for aeromechanical problems associated with multirotor vehicles.
A subset of this model consisting of a three-bladed, offset-hinged,
spring-restrainedmodel of a hingeless blade with � ap-and-� ag de-
grees of freedom for each blade (see Fig. 16) mounted on a gim-
bal, which could pitch and roll, was used to simulate the experi-
mental data obtained by Bousman.136 The results obtained using
quasi-steadyaerodynamics138 were in good agreement with the ex-
perimental data, except that the quasi-steady aerodynamic model
was incapable of predicting the dynamic in� ow mode found by
Johnson.137 Subsequentlyboth perturbation in� ow and dynamic in-
� ow aerodynamicswere incorporatedin the coupled rotor-fuselage
model,139 and the results obtained with dynamic in� ow produced
goodagreementwith the experimentaldata.Furthermore, the in� ow
mode obtained by Johnson was also reproduced. Results illustrat-
ing this unsteady aerodynamic effect are shown in Figs. 23 and 24.
Figure 23 shows the variation of modal frequenciesas a function of
rotor speed at zero collective pitch setting, using quasi-steadyaero-
dynamics. All frequencies except the one corresponding to 0.7 Hz
are predicted well. When perturbation in� ow and dynamic in� ow
are included,the results shown in Fig. 24 indicate that with dynamic
in� ow all frequenciesare predictedwell.140 Furthermore, the in� ow
mode associated with the augmented states introduced by the dy-
namic in� ow model is also predicted.It is shown in Ref. 139 that the

Fig. 23 Variation of modal frequencies with ­ . µ0 = 0, con� guration
4, where ³R , regressing lag mode; µ, pitch mode; Á, roll mode; and ¯R,
regressing � ap mode.

Fig. 24 Variation of modal frequencies with ­ , µ0 = 0, con� guration
4, where ¸, in� ow mode and all other designations of the curves are
identical to Fig. 23.

identi� cation of this mode is relatively complicated. In addition to
these results, very good agreementwith the regressingmode damp-
ing was also obtained.

Another interesting aspect of the coupled rotor-fuselageaerome-
chanicalproblemin hover was studiedby Loewy and Zotto.140 They
studied the effect of rotor shaft � exibility and associated rotor con-
trol couplingon the ground/air resonanceof helicopters,which is of
interest for certain advanced helicopters that have a relatively � exi-
ble shaft. Numerical results were obtained for a four-bladed articu-
latedrotor resemblingtheOH-58D helicopter.It was foundthat shaft
� exibility/control couplingadds new modes of instability to ground
resonance.Thesemodelscouldbeeasilystabilizedby small amounts
of structural damping. Air-resonance type of instabilities,however,
were found to be more susceptible to shaft � exibility/control cou-
pling, and the instability in this case was stronger.

A comprehensive analytical study of the air-and ground-
resonance characteristics of simpli� ed hingeless rotor helicopters
was undertaken by Ormiston.141 The study examined the effect of
nonoscillatorybody modes on air resonance; the effect of high rotor
speeds and high Lock numbers was also considered.The study was
restricted to hover.

The studies mentioned were primarily for the case of hover, and
they did not clarify the role of the torsional degree of freedom on
the air-resonance problem. These items were carefully studied in
Refs. 116 and 117. The mathematical model derived for this cou-
pled rotor-fuselage system also has a provision for including an
active controller capable of suppressing air resonance.The blade is
a simple, offset-hinged,spring-restrainedmodel, with coupled � ap-
lag-torsional dynamics for each blade attached to a rigid fuselage
with � ve rigid-bodydegreesof freedom.Unsteadyaerodynamicsare
representedusing dynamic in� ow of forward � ight.63 In this model
there is complete coupling between trim and the aeroelastic analy-
sis. This mathematical model was used to analyze the behavior of a
four-bladedhingelessrotor helicoptersomewhatsimilar to theMBB
105 helicopter, with an arti� cially induced unstable air-resonance
mode. The system is described by 37 states. In air-resonance prob-
lems the lead-lag regressingmode is the critical degree of freedom.
Therefore, the essential features of this instability are described by
dampingplots for thisparticulardegreeof freedom.Figure 25 shows
that neglecting the torsional degree of freedom on the nominal con-
� guration increases the instability of the lead-lag regressing mode.
The trend of the two curves also tends to diverge at high advance
ratios. The addition of torsion ampli� es the effect of the periodic
terms. At high values of advance ratio, the � ap-lag-torsion model
shows a much greater differencebetween the constant and periodic
stability analysis than does the � ap-lag analysis. The air resonance
of hingeless rotors in forward � ight was also studied in Ref. 142.
Clearly, the neglectof the torsionaldegree of freedom is not prudent
in air-resonance simulations.

It is remarkable that in one decade (1978–1988) consider-
able progress was made in modeling and understanding air
and ground resonance. Reliable models need to include coupled
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Fig. 25 Effect of torsional � exibility on lead-lag regressing mode
damping, air resonance, and soft-in-plane rotor.

� ap-lag-torsionalblademodelswith geometricnonlinearities.Fuse-
lage pitch and roll combined with at least two translationaldegrees
of freedom are required. The inclusion of simple unsteady aero-
dynamics, as represented by dynamic in� ow, is also essential. For
certain con� gurations pitch link � exibility and shaft bending might
also be important.

H. Composite Blade Modeling
Development of structural dynamic and aeroelastic models for

composite blades undergoing moderate or large de� ections, along
with their applicationto aeroelasticityof hingeless,bearingless,and
tilt-rotor blades, as well as of coupled rotor-fuselageproblems, has
been a particularly active area of research. Because of its impor-
tance, this research topic has also been addressed in several survey
papers.9;143;144 Most modern rotor blades are built from composites
because this type of constructionguarantees essentially in� nite life
compared to metal blades used previously that had to be replaced
after a few thousand hours of operation.

The � rst studieson compositeblade modeling started to appear in
the late 1970s. Mans� eld and Sobey145 initiated the � rst pioneering
studyof thisdif� cult subject.Theydevelopedthe stiffnessproperties
of a � ber-reinforcedcomposite tube subjected to coupled bending,
torsion, and extension.Because transverse shear and warping of the
cross section were not included in the model, it lacks some of the
ingredientsnecessaryfor compositerotor-bladeaeroelasticanalysis.

In the seminal work of Giavotto et al.,146 prismatic composite
beams were modeled making use of the St.-Venant principle,which
allowed the “interior” or “central” solutionsto be expressedin terms
of polynomials in the beam axial coordinate.Using the virtual work
principle, a two-dimensional, � nite element based cross-sectional
analysis was then developed that supplies a fully populated 6 £ 6
matrix [see Eq. (21)] of cross-sectional elastic constants (which
determines the shear center location) and stress recovery relations
for the cross section in terms of stress resultants.The blade analysis
of Ref. 147 uses the stiffnesses from this analysis supplemented
by those from Ref. 148 to account for the trapeze effect. These
works were part of the development of a comprehensivehelicopter
analysis in Italy. Despite the generality of this approach, it was
largely unknown in the United States until the late 1980s.

The � rst structuralmodel that was actually incorporatedand used
in an aeroelastic analysis of a composite rotor blade in hover was
developed by Hong and Chopra.149 In this model the blade was
treated as a single-cell, laminated box beam composed of an arbi-
trary layup of composite plies, and the cross-sectional properties
were found analytically.The strain-displacementrelations for mod-
erate de� ections were taken from Hodges and Dowell,41 which does
not include the effect of transversesheardeformations.Each lamina
of the laminatewas assumed to haveorthotropicmaterial properties.
The equations of motion were obtained using Hamilton’s principle.

A � nite element model was used to discretize the equations of mo-
tion. Subsequently this analysis was extended to the modeling of
composite bearingless rotor blades in hover,150 and a systematic
study was carried out to identify the importanceof the stiffness cou-
pling terms on blade stability with � ber orientationand for different
con� gurations.In this model the composite� exbeamof the bearing-
less rotor blade was represented by an I section consisting of three
laminates. In addition to aeroelastic stability studies of composite
rotor blades in hover, Panda and Chopra129 also studied the aeroe-
lastic stability and response of hingeless composite rotor blades in
forward � ight using the structural model presented in Ref. 149. It
was found that ply orientation is effective in reducing both blade
response and hub shears.

The accuracy of analytical structural modeling was improved by
Reh� eld and coworkers,151¡154 culminating in the study of the free
vibration of composite beams.155 This model provided insight into
the role of couplingsand improvedupon the model used in Ref. 149.
It was used as the blade stiffnessmodel in Refs. 156 and 157 to treat
aeroelasticstability for isolatedhingeless,composite rotor blades in
the hovering � ight condition, using a mixed � nite element method
based on Ref. 158. Parametric studies are presented to investigate
the effects of composite elastic couplingand the thrust conditionon
the aeroelastic stability, especially that of the lightly damped lead-
lag mode. The stability of some of the elastically coupled cases
studied was sensitive to the nonclassicalcouplings.When bending-
shear coupling was neglected, for example, this led to signi� cant
errors, especially at high thrust levels. Another signi� cant effect
stems from changes in the equilibrium solution for elastic twist
caused by extension-twistcoupling.The necessityof includingsuch
effects in the blade model for general-purposeanalysis was noted.

A more comprehensive analysis was developed by Kosmatka159

for the structuraldynamicmodelingof compositeadvancedprop-fan
blades, which, with some modi� cations, were also suitable for the
general modeling of composite rotor blades. The associated cross-
sectional stiffness properties and shear center location were ob-
tained froman accompanyinglinear two-dimensional� nite-element
model, which takes into account arbitrary cross-sectionalgeometry
and generallyorthotropicmaterials.The initiallytwistedbladecould
undergomoderatede� ections.Numerical results for frequenciesand
mode shapes obtained from this structural dynamic model were in
good agreement with modal tests on conventional and advanced
propellers.160

Bauchau and Hong47;161 developed a series of large-de� ection
compositebeammodels thatwere intendedfor rotor-bladestructural
dynamic and aeroelastic analysis. The � nal version of this theory is
capableof modelingnaturallycurvedand twistedbeams undergoing
largedisplacementsand rotationsand small strain and is a precursor
to the beam model in DYMORE (see what follows).

Atilgan and Hodges162 presented a theory for nonhomoge-
nous, anisotropic beams undergoing large global rotation, small
local rotation and small strain, using nonlinear-beam kinematics
based on Ref. 48. They used a perturbation analysis to obtain
a two-dimensional linear cross-sectional analysis governed by a
set of equations identical to those of Ref. 146, uncoupled from
the nonlinear, one-dimensional global analysis.163 This work was
used164 to study the aeroelastic stability of rotor blades using a
computer program based on Ref. 146 for determining the blade
stiffnesses.

Almost all of the work doneby 1990was restrictedto closedcross
sections. The early 1990s seems to have marked a turning point in
the approach to composite blade modeling used by researchers in
RWA. Whereas most of the community continued along the lines
of modeling blades in terms of simpli� ed geometries (e.g., box-
beams, thin walls, etc.), a subset of the community began instead
to focus on modeling of realistic blades (principally Hodges and
coworkers) and incorporation of those models into comprehensive
analyses (Bauchau and coworkers).

A detailed description of all of the currently available composite
blade theories is beyond the scope of this paper. However, some
background information is necessary to put into perspective how
composite blade theories developed from the early 1990s. In the
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usualapproachto beamtheorythe in- and out-of-planedeformations
of the cross-sectionalplane (denotedas warping) are either assumed
to be small or neglected.Actually, one can only neglect the in-plane
warping (Poisson contraction and antielastic deformation) if the
stress � eld is uniaxial. Although isotropic, prismatic beams have
uniaxial stress � elds, that is not the case for composite beams in
general.

In view of the relative smallness of the warping, the earli-
est structural models for composite rotor blades determined the
cross-sectional warping and elastic constants based on linear
analyses.146;160;165;166 The linear, two-dimensional, cross-sectional
analysis is developed based on the assumption that it can be un-
coupled from the nonlinear,one-dimensionalglobal analysis for the
beam. The sectional analysis is then done once at each of several
crosssectionsof a nonuniformbeam; the more rapidly the beamsec-
tion changes in the spanwise direction, the more sectional analyses
are necessary.

Unlike the mere assumption that the cross-sectional analysis is
uncoupled or linear, with the use of asymptotic methods one can
formulate conditionsunder which these assumptions actually hold,
and a basis for extending the analysis beyond classical cases can be
found.167 Indeed, asymptotic analyses have indeed shown that this
uncoupling holds for most cases affecting analysis of rotor blades.
Necessary conditionsincludesmall strain, linearly elasticmaterials,
and h ¿ `, where h is a typical cross-sectional dimension and `
is the wavelength of deformation along the beam axis. Even so,
suf� ciency is more dif� cult to establish. For example, the trapeze
effect,which satis� es thenecessaryconditions,can onlybe obtained
from a nonlinearcross-sectionalanalysis. In any case it is clear that
the discussion of composite rotor-blade structural modeling can be
divided into two categories: cross-sectional modeling approaches
and beam structuralmodels that use one-dimensionalbeam kinetics
and kinematics.

Rotorbladesare typicallymodeledas beamsfor aeroelasticityand
dynamicsanalysesbecauseof the simplicityof beamtheoryvs other
approaches.Whereasthree-dimensional� niteelementmodelinghas
tremendouscapabilities,to model rotor blades in that manner would
be extremely expensive, requiring millions of degrees of freedom
and an immense amount of setup labor. Not just any beam theory
is suitable for composite rotor-blade analysis. A typical structural
model in this category should at least include geometric nonlin-
earities and initial twist. Theories in which only strain is assumed
to be small147;158;168 (sometimes referred to as “geometrically ex-
act” theories) are now the ones most promising for general-purpose
analysis.

These methods require cross-sectional elastic constants as in-
put, however, and the determination of these constants is pre-
cisely where one encounters the most dif� culties in composite-
blade modeling. For accurate determination of the cross-sectional
elastic constants of composite blades, two distinct characteristics
must be present: 1) the resulting theory must be elastically cou-
pled and 2) the cross-sectional deformation must be suf� ciently
general.

The � rst requirement, to handle elastic coupling, is exhibited
in the strain energy per unit length, a quadratic form involv-
ing certain beam generalized strain measures (e.g., the exten-
sion of the reference line °11, the elastic twist ·1 , and the elas-
tic bending curvatures ·2 and ·3). For prismatic beams made of
isotropic materials, this quadratic form can take a simple form,
namely,
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When the beam is initially twisted and curved and is made of gener-
ally anisotropic materials, the strain energy per unit length instead

becomes of the form
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where the Si j constantsdependon initial twist and curvatureas well
as on the geometry and materials of the cross section. There are two
alternative models that are commonly used. When the generalized
strains accounting for transverse shear (2°12 and 2°13) are included
in the beam model,
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When a generalized strain accounting for the Vlasov or restrained
warping effect (· 0

1) is included in the beam model,
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The beam generalized strain measures are, in general, nonlinear
functions of the beam displacement and rotational variables.169

The second requirement for accurate modeling of composite
blades is that the calculationof elasticconstantstake into accountall
possible cross-sectional deformations, including transverse shear.
Here an important distinction must be made. Because transverse
shearing is taken into account in the cross-sectional analysis, this
does not imply that one needs explicit transverse shearing general-
ized strains in the beam strain energy density. Moreover, whether
or not a separate warping degree of freedom needs to appear ex-
plicitly in the resulting beam theory also depends on the appli-
cation. The most basic model for closed cross sections, namely,
Eq. (20), when its cross-sectional constants are calculated prop-
erly, takes transverse shearing into account. Although it has neither
transverseshearingnor a separatewarping variable, it is suf� ciently
accuratefor analysisof static or low-frequencydynamicbehavior.170

The additionof generalizedstrain measures for transverseshear de-
formation [see Eq. (21)] will increase the accuracy of second and
higher modal frequenciesassociated with bending, and retention of
a cross-sectionalwarping variable [see Eq. (22)] will predict more
accurately the behavior of thin-walled, open-section beams. It is
important to distinguish between interior warping (also called St.
Venant warping), which affects the values of the elastic constantsof
all three of the preceding models, and restrained warping, which is
only present in Eq. (22) as an additional generalized strain measure
and which changes the boundary conditionsof the one-dimensional
problem. Indeed, among the most commonly held misconceptions
is that one always improves a beam theory by adding more defor-
mation variables in the beam equations, some theories having as
many as nine.171;172 Results obtained from the simplest theory are
frequently as good or better, provided the simplest theory has the
correct elastic constants.173 Although there are theories based on ad
hoc assumptionsthat do a good job for certain classes of blade cross
sections,174 the only way to guarantee that a cross-sectionalanalysis
will always predict correct elastic constants is to make certain that
it is asymptotically correct in terms of a small parameter, that is,
in fact, small. Asymptotically correct means that the approximate
solution agrees with an expansionof the exact solution (in this case
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three-dimensionalelasticity) in terms of the small parameter up to
a speci� ed power of the small parameter.

Cross-sectional analyses can be classi� ed as either analytical
or � nite element based. The analytical ones can be further clas-
si� ed as ad hoc or asymptotic. The ad hoc analyses have become
quite sophisticated,174¡180 all of which are restricted to the thin-
walled case, except Ref. 174. However, asymptotic analyses can
yield closed-form results for section constants and stress/strain re-
covery for beams with thin-walled geometries. As expected, they
are the most accurate of the thin-walled analyses, as shown in
Refs. 181–184. The ad hoc analyses generally invoke assump-
tions that do not hold in the general case, such as ignoring the
hoop stress or hoop moment or ignoring shell bending measures.
The most accurate and powerful of the ad hoc methods appears
to be Ref. 174; although it is only applicable to speci� c cross-
sectional geometries, it yields results that compare favorably with
those from � nite element based analyses. The � nite element based
analyses can be derived either from the point of view of St.
Venant’s principle146;160;165;166;185;186 or from that of asymptotic
methods.167;187 In addition to the variational asymptotic method,
which provides a variationally consistent result, there are analyes
based on standard asymptotic methods.188 Cross-sectional anal-
yses are usually linear, but an exception is the trapeze effect,
which requires either an initial stress approach148 or a nonlinear
analysis.189;190

One computercodefora � niteelementbasedcross-sectionalanal-
ysis thathas shownconsistentlyto bequiteaccurateis theVariational
Asymptotic Beam Section Analysis (VABS), originally developed
by Cesnik, Yu, Hodges, and their coworkers.167;170;187;191¡196 VABS
has promise for meeting industry’s requirements for an ef� cient,
reliable analysis tool for composite blades. Validation studies show
that it has accuracy and analysis � exibility comparable to more
costly, general-purpose three-dimensional � nite element analyses
such as ABAQUS and can reduce computational effort by two to
three orders of magnitude relative to such tools. VABS can perform
a classical analysis [i.e., producinga model of the form of Eq. (20)]
or a Timoshenko-like analysis [i.e., producing a model of the form
of Eq. (21)] for beams with initial twist and curvature.VABS is also
capable of capturing the trapeze and Vlasov effects, which are use-
ful for speci� c beam applications. Finally, VABS can recover the
three-dimensionalstress and strain � elds for � nding stress concen-
trations, interlaminarstresses,etc. VABS is a two-dimensional� nite
element analysis with a typical element library (triangular elements
with 3–6 nodes and quadrilateral elements with 4–9 nodes). It is
modular and can be easily integrated into any CAD/CAM software.
VABS input is highly compatible with formats used in commer-
cial � nite element packages, and so any two-dimensional meshed
model of a cross section constructed in PATRAN or ANSYS can be
converted into an input for VABS with very little effort.

The last 15 years have exhibited a lot of progress in composite
rotor-blade modeling. In summary, currently available composite-
blade theories that were developed and have been used in rotary-
wing aeroelastic applications can be separated into three groups:

1) Theories in the � rst group are those in which some ad hoc
cross-sectionaldeformation is assumed, which leads to a set of one-
dimensional equations governing behavior of the blade. Although
this is themost common approachfor bladesmade of isotropicmate-
rials, it can lead to grossly inaccurate results for composite blades.
Such assumptions as “plane sections remain plane” or “the cross
section is rigid in its own plane” or the uniaxial stress hypothesis
can all lead to serious errors. Examples of such errors are presented
in Refs. 173 and 197.

2)The secondgroupof theories is basedonequationsfor the blade
as a one-dimensional continuum (frequently written in a canonical
form), the cross-sectional properties of which are obtained from a
separate source. The canonical form of the one-dimensional equa-
tions has been known at least since the mid-1980s (Refs. 147, 156,
and 168) and typically takes as input a fully populated 6 £ 6 ma-
trix of cross-sectional elastic constants. Methods for � nding these
constants vary. Unfortunately, this approach lacks a rigorous basis
for extension to include effects other than extension, shear, torsion,

and bending (such as the Vlasov effect) and nonlinear effects such
as the trapeze effect.

3)Theoriesin the thirdgroupare thosein which theequationsgov-
erning cross-sectional deformation and the one-dimensional equa-
tions governingbehaviorof the blade as an equivalent beam are rig-
orously reduced from the common framework of three-dimensional
elasticity theory: This is the newest and most general approach.Ex-
amples include Refs. 163, 167, 187, 198–200. It provides the best
possible cross-sectional properties, quite accurate strain and stress
recovery,197 and yields the geometricallyexact canonical equations
of motion for beams.147;158;168 It has been extended to include such
things as the trapeze190 and Vlasov184 effects. The trapeze effect
accounts for the increase in effective torsional rigidity from axial
force, important in rotating beams. The Vlasov effect is important
for thin-walledopen cross sections,examples of which are typically
used in bearingless rotor � exbeams.

These theories have been applied to a large number of rotary-
wing aeroelastic problems, as indicated next: 1) aeroelastic behav-
ior of composite hingeless and bearingless rotor blades in hover
and forward � ight.156;157;176;180;185;186;201;202 2) air and ground reso-
nance of helicopters with elastically tailored composite blades178;
and 3) tilt-rotoraeroelasticperformance,stability,and responsewith
elastically coupled composite rotor blades.203¡227

I. Swept-Tip, Hingeless, and Bearingless Rotors
The preceding sections have provided considerable information

on hingeless rotors. Therefore, it is interesting to discuss the aeroe-
lastic behavior of swept tip, or advanced geometry rotors schemat-
ically depicted in Fig. 26. “Swept tip” implies both sweep and
anhedral. Furthermore, the tip can have a tapered geometry. The
structural modeling of swept-tip rotor blades represents an impor-
tant practical and complicated theoretical problem. An approxi-
mate aeroelastic model for swept-tip rotor blades was developed
by Tarzanin and Vlaminck208; however the approximate represen-
tation of the structural, inertia, and aerodynamic coupling effects
cause the model to be unreliable. The � rst consistent model for a
hingeless rotor with a swept tips was presented in Refs. 100 and
101. The hingeless blade was modeled using a Galerkin � nite el-
ement technique, and a special element for structural, inertia, and
aerodynamicproperties of the swept tip was developed.Both hover
and forward � ight were considered. It was found that sweep and
preconecan be used to modify the aeroelasticbehaviorof the blade.
The aeroelastic analysis of swept-tip rotors was also considered
in Ref. 209 with transonic aerodynamics and a free wake model.
Structural dynamic tests and correlation with a moderate de� ec-
tion theory were undertaken by Ref. 210. Subsequent correlation
by Ref. 211 showed conclusively that geometrically exact analy-
ses correlate much better. Parametric studies for such rotors were
carried out.201 Recently, Maier et al.212 conducted correlations be-
tween experimental data and simulations using the CAMRAD II213

computer code good agreement was obtained between theory and
test for the case of hover. For forward � ight the agreement between
simulation and test data was considerably worse than for the case
of hover.

One of the most important modern rotor systems is the bear-
ingless rotor, schematically depicted in Fig. 4. The analysis of a
bearingless main rotor (BMR) is complicated due to the redundant
structuralcon� guration in the root region. Mathematicalmodels for
such rotors made their � rst appearance in the late 1970s. One of
the earliest analyses of such a rotor con� guration was incorporated

Fig. 26 Typical hingeless blade with advanced geometry tip.
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into the FLAIR code.91;92;134 Subsequently, Sivaneri and Chopra103

developed a useful � nite element model for bearingless rotors. A
� exbeam-type bearingless rotor is modeled using regular beam � -
niteelementsfor the outer portion,a rigid clevis,andmultiplebeams
to represent the � exbeam and the torque tube, as shown in Fig. 27.
Special displacement compatibility conditions are enforced at the
clevis. This model represents essentially a special redundant root
element for the � exbeam.

A sectiondealingwith the propertiesof hingelessand bearingless
rotors would be incomplete without mentioning an insightful study
by Weller,214 which provides a comparison of the aeromechanical
stability characteristics, in hover, for two models of convention-
ally designed soft-in-planemain rotors. One model is a bearingless
con� guration, simulating the Bell helicopterM680 main rotor. The
second model is a hingeless rotor similar to the MBB BO-105 main
rotor.The purposeof the studywas to compare the test data obtained
from the two models, identify their respective aeromechanical sta-
bility characteristics,and determine the design features that have a
primary effect on the air- and ground-resonancebehavior in hover.

In Ref. 214 two Froude-scaled models, one hingeless and one
bearingless,were tested. One was an MBB-105 1 : 4 scale rotor, and
the other one was a 1 : 4 scale bearingless rotor resembling the Bell
bearinglessrotor.The rotorswere testedon the AdvancedRotorcraft
Experimental Dynamics system, which can provide body pitch and
roll degrees of freedom, at both low and high thrust conditions.The
results obtained indicate that the hingeless rotor concept offers bet-
ter stability margins at moderate-to-high-thrust conditions because

Fig. 27 Idealized � nite element model for the root region of a bearing-
less rotor.

Fig. 28 Description of the Comanche bearingless main rotor, including both elastomeric and Fluidlastic® damper con� gurations.

of its aeroelastic characteristics; thus, the hingeless rotor is more
stable at 1g thrust and above. For low thrust conditions, however,
the bearingless rotor is better because of its larger structural damp-
ing caused by the elastomeric lag damper. In these comparisons it
is also important to keep in mind that the hingeless rotor had no
lag damper, and its damping was caused by its inherent structural
damping.

An outstanding study is Ref. 215, which describes in detail the
aeroelastic stability wind-tunnel testing of the Comanche BMR and
presents correlations with an analytical model. This BMR con� g-
uration is depicted in Fig. 28. A series of wind-tunnel tests were
performed on a 1

6 Froude-scaled model of the RAH-66 Comanche
BMR at the Boeing vertical/short takeoff and landing wind tunnel.
The tests had two objectives:1) establish the aeromechanicalstabil-
ity characteristics of the coupled rotor-fuselage system and 2) cor-
relate the experimental data with analytical stability predictions so
that the methodology can be used with con� dence for the full-
scale aircraft. An initial test of the rotor with elastomeric dampers,
shown in Fig. 29, uncovereda limit-cycleinstability.This instability
manifested itself for the minimum � ight weight con� guration.
Figure 29, taken from Ref. 215, depicts the frequency and
damping of the coupled rotor-body system with elastomeric
snubber/dampers. The presence of the body degrees of freedom
and their coupling with the blade degrees of freedom modi� es sig-
ni� cantly the dynamic characteristics compared to the isolated ro-
tor case. A frequency coalescence between the lag regressing and
the � ap-regressing/body-roll mode now exists. Near this coales-
cence, the damping is low, and a limit-cycle oscillation occurs at
the regressing lag frequency. Closer examination of this nonlinear
phenomenon215 revealed that this problem might also be present
when � ying with the prototype � ight weight. A decision was made
to replace the elastomeric snubber/damper by a Fluidlastic® snub-
ber/damper, which is also shown in Fig. 28. The Fluidlastic snub-
ber/damper is similar to the elastomeric dampers, except that it in-
cludes a chamber within the � at elements, which is � lled with sili-
cone � uid to providethe blade lead-lagdamping.As the elastomeric
elements that constitute the wall of the chamber � ex in shear, the
� uid is forced to � ow around a rigid diverter protruding into the
� uid, thereby generating a damping force.
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Fig. 29 Hover air resonance of the minimum � ight weight con� gura-
tion with elastomeric dampers at 8-deg collective pitch.

Fig. 30 Hover air resonance at 9-deg collective with Fluidlastic®

damper.

Further study revealed that nonlinearitiesin the stiffness and loss
factor of the elastomeric snubber/dampers were the cause of this
limit-cycle behavior. As shown in Ref. 215, the stiffness of the Flu-
idlastic damper is nearly linear, and using it eliminates the limit-
cycle instability. Figure 30 shows the hover air response character-
istics of the prototype � ight weight con� guration with the Fluid-
lastic dampers at 9 deg collective. The test data for both frequency
and damping are also compared with analytical results obtained
from the UMARC/B code, which is a Boeing modi� ed version of

UMARC.216 The correlations between the results for the code in
both hover and forward � ight are quite good.

During the last threedecades,thehelicopterindustryin the United
States and abroad has invested a very substantial amount of re-
sources in the developmentof productionhingelessand bearingless
rotor systems. Hingeless rotored helicopters, such as the MBB BO-
105 and the Westland Lynx, have been in production for almost
25 years. However, successful bearingless rotored helicopters have
gone into production only during the last decade. Typical exam-
ples are the MD-900 Explorer,217 the Comanche bearingless main
rotor (BMR),215 and the Eurocopter EC135.218 The MD900 and
the Comanche have � ve-bladed rotors, whereas the EC135 is four-
bladed. This is an indication that BMR technology has matured in
the last decade, and substantial gains in the understandingof aeroe-
lastic and aeromechanical aspects of these rotors have been made.
Therefore, one can view the BMR systems that are currently in pro-
duction as the crowning achievement of RWA during the last two
decades.

J. Comprehensive Analysis Codes
The complexity of the RWA problem has motivated the devel-

opment of computer codes that have the capability of solving both
isolated-blade,as well as coupledrotor-fuselageproblems.Once the
large effort required was invested, other calculations in the area of
performance and � ight mechanics were also included in the code.
Such codes became known as comprehensive analysis codes. Per-
haps the � rst of these codes, known as REXOR, was developed
by Lockheed in the early to mid-1970s (Ref. 219). One of the � rst
successfulcodeswas CAMRAD developedby Johnson,82;220 which
eventually became CAMRAD/JA.221

Another important comprehensive analysis code initiated in the
early 1980s and completed in the 1990s was the Second Gen-
eration Comprehensive Helicopter Analysis System, also known
as 2GCHAS,222¡228 which was developed with funding by the
U.S. Army Aero� ightdynamics Directorate (formerly known as
the Aeromechanics Laboratory), as a second generation replace-
ment for REXOR. Similar codes were developed by various heli-
copter companies, two of the better known ones are RDYNE229 and
COPTER.230

Another very useful code is UMARC,216 developed at the
University of Maryland. The UMAR code developedat the Univer-
sity of Maryland has also enjoyed considerablesuccess, as students
who graduatedhave taken the code with them and started using it in
an industrial setting. Subsequently, a more advanced and improved
versionof CAMRAD/JA was developed:CAMRAD II.214 The three
most advanced,CAMRAD II, 2GCHAS, andDYMORE, have taken
advantage of multibody dynamics that facilitate the effective treat-
ment of complex con� gurations.231¡233

Among the various comprehensive helicopter analysis codes,
CAMRAD II is perhaps the most widely used, both in the United
States as well as Europe and Japan. The code has been slightlymore
successfulthan its competitorsin correlatingwith experimentaldata.
The wide acceptanceof this code is evident from a recent paper that
describes the design aspects of a new production bearingless main
rotor used on the European EC135. This rotor has excellent damp-
ing margins throughout its operation envelope. Modal damping for
this rotor in level � ight is shown in Fig. 31. The dots are from the
� ight test, and the solid line is the result of a calculation performed
by CAMRAD II. The agreement between theory and test is good.
The damping amounts to approximately 2:5% in the rotating sys-
tem. This rotor is equipped with an elastomeric lag damper and
apparently the code reproduces its behavior well.

The 2GCHAS code has also undergone considerable validation
during the last � ve years, and overall the correlationsindicategener-
ally satisfactorypredictivecapabilityfor a fairlywide rangeof rotor-
craft problems. A modi� ed and improved version of the 2GCHAS
codehas recentlybecomeavailable;it is denotedby the name Rotor-
craft ComprehensiveAnalysis Code (RCAS). In addition to consid-
erable improvements that enhance its computationalef� ciency and
reduce the run times required, the code has the added advantage of
beingable to run on PC platforms using the Linux operatingsystem.
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Fig. 31 Regressing lag mode damping in forward � ight and compari-
son with CAMRAD II.

The nonlinear beam element has been signi� cantly improved over
the older 2GCHAS codeby makinguse of embeddedframes similar
to the method used in GRASP.

The multi-� exible-body code DYMORE by Bauchau and
coworker has extensive capability in modeling of system
hardware.168;231

IV. 21st Century—Period of Re� nement
(2001–present)

It is evident from the various papers published since the turn
of the new century that the interest in studies dealing with aeroe-
lastic stability has diminished during the last few years. There
is some interest in tilt-rotor aeroelastic stability,234 aeroelastic
scaling,235 active control for stability augmentation,234 and aeroe-
lastic analysis of rotors with trailing-edge � aps used for vibration
reduction.236 At the last European Rotorcraft Forum (28th Euro-
peanRotorcraftForum, Bristol,United Kingdom,September2002),
there was a total of seven dynamics sessions, where 21 differ-
ent papers were published and presented. Not a single paper dealt
with any signi� cant aspect of the rotary-wing aeroelastic stability
problem.

A recent paper8 clearly indicates that the primary interest has
shifted towards active vibration reduction, load correlation, and re-
� nement of existingcodes and analyses to providebetter agreement
with existing experimental databases or new experimental test data
generated.

V. Conclusions
This historicalperspectiveillustratesthat the progressmade in the

area of rotary-wing aeroelasticityduring the last 60 years has been
spectacular.Given the complexityand diversityof the problems that
have been considered, as well as those that still persist, it is fair to
say that the accomplishmentsof this relativelyshort period compare
very favorably with what has been accomplishedby the � xed-wing
community during an entire century. Furthermore, considering the
disparity in funding between these two areas of endeavor over such
an extended time period further ampli� es the accomplishments in
RWA.
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