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This paper provides a historical perspective of the fundamental developments that have played a central
role in rotary-wing dynamics and aeroelasticity and have had a major impact on the design of rotary-wing
aircraft. The paper describes a historical progression starting with the classical flap-pitch problem that em-
ulated fixed-wing behavior and describes the evolution of the dynamic and aeroelastic problems into those
that are unique to rotorcraft, such as the flap-lag problem, the lag-pitch problem, and the coupled flap-lag-
torsional problem. Subsequently, the coupled rotor/fuselage aeromechanical problems such as ground and air
resonance are considered. A description of the evolution of the methodology used in the formulation and solu-
tion of these types of problems is also provided, emphasizing the structural and aerodynamic models required
for their effective formulation and solution. The mathematical techniques used for solving the rotary-wing aeroe-
lastic problems in hover and forward flight are also described. The primary emphasis of the paper is on aeroe-
lastic stability, and aeroelastic response is only treated briefly. The paper focuses on contributions that have
historical value because they represent landmark treatments. Because of the large amount of material avail-
able, an all-inclusive treatment of the research done in this field is impractical, and the paper has unavoidable

omissions.
Nomenclature Cy = weight coefficient
a = acceleration vector [C(¥)] symbolic matrix, representing linear
[B(y)] = tranformation matrix for multiblade o damplng effe.:cts o
coordinates e..e,e; = unit vectors in the directions of the
b = semichord coordinates, Xy, Yo, Zo, respectively before
Cupo = profile drag coefficient o deformation .
C(k) = Theodorsen’s lift deficiency function €..e,e. = triade,,e,, e after deforma}tlon .
C'(k,m,h,) = Loewy’s lift deficiency function e = offset of blade root from axis of rotation
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complete nonlinear state vector loading

{Fvi(¥,q, 4}
h = plunging motion, used in unsteady

~ aerodynamics

hy, = (h,/b) nondimensional wake spacing

I, = blade inertia about lag hinge

k; (wb/U) = reduced frequency

L = unsteady lift, per unit length based on
Greenberg’s theory

[L(y)] = linear coefficient matrix

[ = length of elastic part of the blade

m = (/<) frequency ratio

N or N, = number of blades

{N(q, )} = nonlinear vector

q = unknown state vector

R = blade radius

R = position vector of a mass point of blade
cross section, in blade-fixed,
rotating reference frame

[S] = transformation matrix between triads
@.¢,.é,) and @, &,,¢)
u, v, w = components of the displacementof a point

on the elastic axis of the blade in directions,
e, e,, and e, respectively, subscript k
implies kth blade

14 = pulsating flow velocity in Greenberg’s theory
AV = varying partof V

Vo = constant part of V

v; = mean induced velocity at the rotor disc

{X} = generalized coordinate vector

Xy = blade cross-sectionalaerodynamic
center (A.C.) offset from elastic axis
(E.A.), positive for A.C. before E.A.

{z(y¥)} = known periodic forcing

o = constant part of pitch, or angle of attack

B = flap angle

By = preconing, inclination of the feathering axis
with respect to the hub plane measured in a
vertical plane

Bo = steady flap angle

Bi, B> = rigid-body flapping angle for teetering rotor

y = Lock number

A = change in angle of attack for dynamic stall

SA = perturbationin steady inflow ratio

€ = basis for order of magnitude, associated with
typical elastic blade slopes

¢ = lagangle

NsLi = viscous structural damping coefficients
in percent of critical damping, for the
lag modes

0 = total pitch angle

6o = steady pitch angle

015, O1c = cyclic pitch components

A = constant part of the inflow ratio

Mgy Me = cyclic components of inflow ratio

" = Vcosag/Q2R advanceratio

oA = density of air

o = blade solidity ratio: blade area/disk area

¢ = rotation of a cross section of the blade around
the elastic axis

¥ = azimuth angle of blade (1 = Qr) measured
from straight aft position

Q = angular velocity vector

wr1, w11, oy = First rotating natural frequenciesin flap, lag,
and torsion, respectively, nondimensionalized
with respect to 2

oy = torsional frequency

I. Introduction and Background

HE 100th anniversary of the Wright brothers’ historic flight
is being celebrated by a variety of events, and several survey

papers dealing with various aspects of aeroelasticity are also being
written for this occasion. The present paper focuses on rotary-wing
aeroelasticity. Its objective is to provide a historical perspective on
this fascinating field.

When reviewing research in rotary-wing aeroelasticity (RWA),
it is important to note a few historical facts. The Wright broth-
ers flew in 1903, and Sikorsky built and started flying the first
operational helicopter, the R-4 or (VS-316), in 1942. The R-4
was a three-bladed helicopter with a rotor diameter of 11.6 m
and was powered by a 185-hp engine. Thus, there is an initial
gap of 39 years between fixed-wing and rotary-wing technolo-
gies. Therefore, it is not surprising that certain rotary-wing prob-
lems, particularly those pertaining to unsteady aerodynamics, are
still not well understood. The situation is further compounded
by the complexity of the vehicle when compared to fixed-wing
aircraft.

The field of rotary-wing aeroelasticity has been a very active
area of research during the last 40 years. This research activity has
generateda large number of papers, which combined with the papers
in this area published between 1945-1963, constitutes a large body
of literature that is impossible to review in a single survey paper.
Fortunately,a considerablenumber of review papers and books have
also been published.

These review papers, when considered in chronological order,
provide a historical perspective on the evolution of the field.!™!*
One of the first significant reviews of rotary-wing dynamic and
aeroelastic problems was provided by Loewy,'? where a wide range
of dynamic problems was reviewed in considerable detail. A more
limited survey emphasizing the role of unsteady aerodynamics and
vibration problems in forward flight was presented by Dat.? Two
comprehensivereviews of rotary-wing aeroelasticity were presented
by Friedmann 2 In Ref. 3 a detailed chronologicaldiscussionof the
flap-lagand coupled flap-lag-torsionproblems in hover and forward
flight was presented, emphasizing the inherently nonlinear nature
of the hingeless blade aeroelasticstability problem. The nonlineari-
ties considered were geometrical nonlinearitiescaused by moderate
blade deflections. In Ref. 4, the role of unsteady aerodynamics, in-
cluding dynamic stall, was examined, together with the treatment
of nonlinear aeroelastic problems in forward flight. Finite element
solutions to RWA problems were also considered, together with
the treatment of coupled rotor-fuselage problems. Another detailed
survey by Ormiston' discussed the aeroelasticity of hingeless and
bearingless rotors, in hover, from an experimental and theoretical
point of view.

Althoughaeroelasticstability playsanimportantrolein the design
of rotor systems, the aeroelasticresponse problem as represented by
the rotorcraft vibration and dynamic loads prediction plays an even
more critical role. Thus, two other surveys have dealt exclusively
with vibration and its control in rotorcraft.”>:'® These papers focus
on the vibrations caused by the aeroelastic response of the rotor,
and the study of various passive, semiactive, and active devices for
controlling such vibrations.

Johnson!®!! has published a comprehensive review paper ad-
dressing both aeroelastic stability and vibration problems for ad-
vanced rotor systems. In a sequel’ to his previous review papers,
Friedmann discussed the principal developments that have taken
place between 1983-1987, emphasizing new methods for formulat-
ing aeroelastic problems, advances in treatment of the aeroelastic
problem in forward flight, coupled rotor-fuselage analyses, struc-
tural blade modeling, structural optimization, and the use of active
control for vibration reduction and stability augmentation.

A comprehensive report,'* which contains a detailed review of
the theoretical and experimental developmentin the aeroelasticand
aeromechanical stability of helicopters and tilt-rotor aircraft, car-
ried out under U.S. Army/NASA sponsorship during the period
1967-1987 was prepared by Ormiston et al. Somewhat later, key
ideas and developmentsin four specific areas— 1) role of geometric
nonlinearitiesin RWA, 2) structural modeling of composite blades,
3) coupled rotor-fuselage aeromechanical problems and their ac-
tive control, and 4) higher harmonic control for vibration reduction
in rotorcraft—were considered by Friedmann® At the same time
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Chopra! surveyed the state of the art in aeromechanical stability of
helicopters, including pitch flap, flap lag, coupled flap lag torsion,
air and ground resonance. Advances in aeromechanical analysis of
bearingless, circulation-controlkd, and composite rotors were also
treated in this detailed paper. Perhaps the most comprehensive pa-
per on RWA was written by Friedmann and Hodges.? This paper
contains close to 350 references and dwells on all of the important
aspects of rotary-wing aeroelastic stability and response problems.
The treatmentis broad and comprehensiveand is currentup to 1991.
A partial review of some recent developments can also be found in
Ref. 7.

In addition to the numerous papers dealing with the subject of this
review, this topic is also described in a number of books. Among
these, the most notable one is Johnson’s'” monumental treatise on
helicoptertheory, which containsextensive,detailed, and useful ma-
terial on aerodynamic,dynamic,and mathematicalaspectsof rotary-
wing aerodynamics, dynamics, and aeroelasticity. A more recent
book!® treats several aeroelastic and structural dynamic problems
in rotorcraft. Quite recently, Leishman' has written an excellent
book on helicopter aerodynamics, which contains good treatments
of unsteady aerodynamics, rotor wake models, and dynamic stall.

The principal objectives of this paper are as follows:

1) Present the historical evolution of modern rotary-wing aeroe-
lasticity, starting with the isolated blade aeroelastic problem and
progressing to the coupled rotor fuselage aeromechanical problem.

2) Present the evolution of the methodology for formulation and
solution of rotary-wing aeroelastic problems. The principal focus
will be on aeroelastic stability; therefore, the aeroelastic response
problem will be mentioned only briefly.

3) Describe some current trends so as to illustrate considerable
differences between current and past endeavors.

The paper will not attempt to provide a comprehensive literature
review of all of the papers published in the field. Instead, it will
focus on particular studies that have a historical value because they
represent an important contribution to the field of RWA.

To understandthe historical developmentof RWA, it is important
to recognize that the mathematical models capable of simulating
rotary-wing aeroelasticbehavior were intimately linked to the types
of helicopterrotors used. The evolution of the various types of main
rotor systems was the principal driver that provided the impetus for
the development of the mathematical modeling tools. The first gen-
eration of helicopters used articulated blades. A typical articulated
rotor hub together with an idealized representationfor mathematical
modeling are shown in Fig. 1. For this class of rotors, the dynamics
of the blade are characterized by the flap 8, lag ¢, and pitch 6 angles,
which allow the blade to move as a rigid body. Flexible bending and
torsional displacementcan be added to the displacementsas a result
of the rigid-body motion.

A few years later teeteringrotors, shownin Fig. 2, were developed
and used extensively on helicopters manufactured by Bell as well

-ARTICULATED ROTOR-
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Rotor Hub

Lag Damper

Fig. 1 Typical articulated hub (top) and typical articulated blade
model (bottom).
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Fig. 2 Typical teetering blade model.
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Fig. 3 Typical hingeless rotor hub (top) and two views of a typical
hingeless blade used in mathematical modeling (bottom).

as other companies. These blades also have a flapping hinge, except
that now the rigid-body flap angle on the first blade is equal and op-
posite to that on the second blade, thatis, 8 = —f,; elastic flap, lag,
and torsional deformation can be superimposed on the rigid-body
flapping motion. Teetering rotors were suitable primarily for lighter
helicopters because the size of the blades for heavy helicopterscre-
ates almost insurmountable dynamic problems.

The next step in the evolution of rotor systems was the develop-
ment of the hingeless rotors shown in Fig. 3. Hingeless rotor config-
urations started appearingin the early 1960s and became operational
in the late 1960s and early 1970s. Figure 3 depicts a typical exam-
ple of a hingeless hub together with a typical model for a hingeless
blade. These blades have no flap or lag hinges. The pitch bearing
is still needed to introduce the collective and cyclic components of
pitch.
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Bearingless rotor

Blade
attachment

Pitch horn

Fig. 4 Typical bearingless rotor hub.

The final step in the evolution of main rotor systems is the bear-
ingless rotor depicted in Fig. 4. Bearingless rotor configurations
started appearing in the late 1960s and early 1970s. However, they
were incorporated in helicopters that went into production only in
the late 1990s. This rotor has no hinges; both the flap and lag de-
grees of freedom are cantilevered. The pitch bearing is replaced
by a flexbeam, and the pitch inputs to the blade are provided by
elastically twisting the blade using the pitch horn.

With this background it is now possible to review some of the
most important developments in RWA. For convenience, the time
period from the mid 1940s to the present is divided into three prin-
cipal periods: 1) the early years, 1945-1970, when engineers and
researchers were struggling to accommodate new developments in
rotor hardware; 2) the golden age, 1970-2000, when many impor-
tantcontributionswere made leading to a much better understanding
of the methods for formulating and solving the RWA problem; and
3) the 21st century or period of refinement, 2000—present, when the
large computing power currently available is utilized to refine the
accuracy and reliability of the methods for formulating and solving
aeroelastic problems, by introducing computational aeroelasticity
and combining it with control, acoustics,and optimizationin a more
general aeromechanical framework.

Each of these periods is considered in detail in the following
sections.

II. Early Years (1945-1970)

A. TIsolated Blade Stability

The state of the art emerges when reading all of the papers pub-
lished during this time period. However, an excellent description of
this period can be found in Loewy’s outstandingsurvey paper.'? The
insight provided by Loewy is augmented by several other surveys
that partially cover this time period.>>* This was an interesting pe-
riod characterized by rapid hardware developments combined with
a lack of sophisticated models capable of replicating the aeroelastic
behavior. The appropriate methodology for formulatingand solving
the rotary-wing behavior was not well understood, and the field was
strongly influenced by the desire to adapt the most successful tools
that have proven themselves for the fixed-wing static and dynamic
aeroelastic problems to the rotary-wing case. Since the majority
of the rotor systems were articulated, the analyses developed were
aimed at modeling the blade configuration shown in Fig. 1.

A landmark contribution in this area was a paper by Miller and
Ellis.>! The formulation of the problem was carried out by using
the direct Newtonian approach and writing the equations of mo-
ment equilibrium about the hinge. An important facet of this paper,
which was somewhat typical also of other papers generated in this
period, was the fact that the individuals associated with the work
had industrial experience and outstanding intuitive understanding
of the physics of the problem. Thus, even without achieving a com-
pletely accurate formulation (i.e., some terms in the equations could
be missing, but they were usually quite small) the conclusions and
the insight provided were usually quite accurate.

The basic problem treated was the coupled flap-pitch problem,
with B and 6 degrees of freedom shown in Fig. 1, augmented by
blade elastic bending. For aeroelastic stability the emphasis was
on hover, using unsteady aerodynamics that represented essentially

FLUTTER BOUNDARY

DIVERGENCE
BOUNDARY

|

Il L
0.02 0.04 0.06 0.08 0.1
X/C

Fig. 5 Typical flap-pitchstability boundaries, showing divergence and
flutter as a function of blade c.g. offset from feathering axis x;/c, v =12,
wg =1,and ¢/R = 0.05.

a quasi-steady version of Theodorsen theory?* This resembled the
classical bending-torsionflutter analysis of a fixed wing, augmented
by the aerodynamic and inertia terms caused by rotation. Blade
stability was determined from linear constant coefficient equations,
which resembled the small perturbation equations commonly used
in fixed-wing aeroelasticity.

A typical stability boundary associated with this type of analysis
is shown in Fig. 5. The stability boundary is plotted by providing
the torsional stiffness (wy/€2) in per rev, plotted against the off-
set of the cross-sectional center of gravity behind the feathering
axis. Several interesting aspects are noteworthy. Both divergence
and flutter boundaries are evident. Divergence depends on the offset
between feathering axis and cross-sectionalc.g. offset. This differs
from fixed-wing divergence, which depends strictly on offset be-
tween elastic axis and aerodynamic center. It can be shown that
Theodorsen-typeunsteady aerodynamicshas only a minor effect on
the flutter boundary because the reduced frequency k, is low.?! Two
otherimportanteffects identified in Ref. 21 were the effect of steady
coning and steady in-plane bending. It was noted®! that steady elas-
tic flapping deflections have a minor effect on blade stability for an
articulated rotor. On the other hand, it was emphasized that steady
elastic in-plane deflection can have a major effect on blade stability,
particularly for nonuniform spanwise mass distribution?! There-
fore, this was one of the first studies to pinpoint the significance of
the lag degree of freedom in rotary-wing aeroelastic stability.

The type of stability boundary shown in Fig. 5 can be modified
significantly by kinematic coupling K, between the flap and feath-
ering degrees of freedom as shown in Refs. 23 and 24. Pitch-flap
coupling can be introduced by a skewed flap-hinge geometry rel-
ative to the radial axis of the blade as shown in Fig. 6a, or by an
appropriate positioning of the pitch link relative to the flap hinge as
shown in Fig. 6b. The pitch-flap coupling is represented by

A6 = —K,AB (1)

for the geometry shown in Fig. 6a, K, = tands, K, >0, flap up
decreases the blade pitch. Positive pitch-flap coupling acts as an
aerodynamicspringon the flap motion and has a significantinfluence
on flap-pitch stability.

As mentioned, the importance of large steady in-plane deflection
on flap-pitchinstabilities was identified in Ref. 21. Thus, it was only
natural that the next type of instability to receive attention was the
pitch-lag instability.

The first comprehensive study of the pitch-lag instability was
carried out by P. C. Chou.?>2® This instability was encountered dur-
ing the whirl tower testing of a very light rotor blade designed by
the Prewitt Aircraft Company for the Vertol H-21 helicopter. High-
amplitude oscillation occurred at low €2, high collective and max-
imum power, primarily in lead lag, at a frequency of 0.318/rev
(close to lag frequency) and lag amplitude of 30 deg. No coupling
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Blade

Fig. 6a Pitch-flap coupling
caused by skewed flap hinge.

Blade

Pitch Horn

Fig. 6b Pitch-flap coupling.

between rotor and tower dynamics was found, and despite the large
oscillations the blades sustained no damage.

A comprehensiveanalysis of this instability for hover was devel-
oped by Chou.?>2° The analysis was linear and restricted to fully
articulated rotors with inelastic blades. A lag damper assumed to
have constant viscous damping C, was included in the analysis. It
was found that the instability was caused by pitch-lag coupling

A0 = —K;A¢ 2)

introduced by skewed lag hinges located outboard of the flapping
hinge. An elegantapproximatestability criterion was obtained from
the analytical model

2K, B3,

(1 — (Bo/00) K 160

which facilitated the design of stable blades.

C. + >0 3)

During the mid-1960s, two new types of rotor systems, tilt rotors
and hingeless rotors, emerged. The modeling of this class of rotor
systems started a lengthy preoccupation with one of the most inter-
esting and vexing dynamic problems, the coupled flap-lag aeroelas-
tic problem. The first paper attempting to develop a model for the
flap-lag instability for hingeless and teetering rotors was presented
by Young.?” The equations of motion for hover and forward flight
were derived in an ad hoc manner. The author recognized that to
capture the mechanism of instability the coupling between the flap
and lag degrees of freedom, caused by aerodynamic and coriolis
effects, is required. Because these two types of terms are nonlinear,
they were included, but not in a consistent manner, that is, whereas
terms having a certain order of magnitude were included, others
having a similar order of magnitude were missing in the equations
of motion. The effects of elastic modes and advance ratio were also
incorporated in an approximate manner. Inspired by the stability
criterion shown in Eq. (3), the author derived a fairly complicated
stability criterion for the flap-lag case for both hover and forward
flight. Using this stability criterion, a number of sweeping conclu-
sions were reached, some of these were incorrect, some partially
correct, and a few were correct. The paper correctly identified the
lag degree of freedom as the trigger for the flap-lag instability, and
it also identified the aerodynamicand inertial coupling terms as im-
portant. However, the stability criterion was false; and, therefore,
the conclusionthat “. . .all current rotor types are susceptible [to in-
stability]in the speed range of 125-150 knots, or at lower speeds at
high altitude. . .” was also incorrect.?” Subsequently, Hohenemser
and Heaton?® treated the same problem using a different formula-
tion, which suffered from inaccuracies similar to Young’s caused
by a variety of approximations.Instead of a stability criterion, they
tried to determine blade stability by using a somewhat unconven-
tional numerical integration scheme. The results presented in the
paper were mainly of a qualitative nature.

Both studies failed to clearly identify the nature of the flap-lagin-
stability problem because they did not accountfor the critical role of
the elastic or structural coupling between the flap and lag degrees of
freedom. In retrospect, this is somewhat surprising because a monu-
mental NASA technicalreport written by Houbolt and Brooks® was
availableat that time and it containedthe correctstructural coupling
terms which were required for the proper treatment of this problem.
It was important to mention that Ref. 29 was overlooked by many
studies on RWA conducted during this time period, and its value
was only recognized belatedly, in the late 1960s and early 1970s.

It is remarkable that while treatments of flap pitch, pitch lag, and
even flap lag were presented for the case of hover a comprehensive
analysis of coupled flap-lag-torsionalblade stability in hover failed
to materialize. Although a set of suitable equations were derived in
Ref. 30, numerical results illustrating blade aeroelastic behavior in
hover were not computed.

Up to this point, the aeroelastic problems discussed were mainly
those associated with the hovering flight condition, which is gov-
erned by differential equations with constant coefficients. One of
the earliest papers to recognize the effect of periodic coefficients
caused by forward flight on flapping motion was Horvay>! The
periodic equations were solved using Hill’s method of infinite de-
terminants. Clearly, because only the flapping degree of freedom
was considered the level of parametric excitation that is necessary
to cause an instability had to be quite large. This in turn leads to very
high advance ratios that do not occur during normal operating con-
ditions of rotors in forward flight unless one slows the rotor down.
This approach to dealing with the effect of periodic coefficients was
used in the coupled flap-lag-torsional analysis of rotor blades pre-
sented in Bielawa’s dissertation® However, the numerical results
obtained were inconclusive.

The studies considered up to now were based on quasi-steady or
unsteady aerodynamic models that were developed essentially for
the fixed-wing aeroelastic problem. However, there was a growing
awarenessthat RWA requiresunsteady aerodynamicmodels capable
of representing the complicated aerodynamic environment present
on a helicopter. The first important rotary-wing unsteady aerody-
namic theory developed for hover is the work of Loewy.*? This
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Fig. 7 Idealized wake geometry for Loewy’s incompressible unsteady
aerodynamic model.

theory is a generalization of Theodorsen’s theory, and it provides
a useful approximation to the unsteady wake beneath the hover-
ing rotor. The geometry for Loewy’s model is illustrated by Fig. 7.
In this theory the effect of the spiral returning wake beneath the
rotor is taken into account approximately. The wakes, infinite in
number, lie in planes parallel to the disc of the rotor and are asso-
ciated with both previous blades (for an N-bladed rotor) and pre-
vious revolutions. The nondimensional wake spacing h,, = (2w v;/
QNb)=4r/o.

The airfoil dynamics in this theory are identical to the simple
harmonic pitch-and-plungemotion postulated in Theodorsen’s the-
ory. Loewy has shown that for this case the unsteady aerodynamic
lift and moment can be written in a form identical to Theodorsen’s
theory, except that Theodorsen’s lift deficiency function C (k) is
replaced by a more complicated lift deficiency function given by
C'(k,m, hy,).

Loewy’s theory is restricted to low inflow ratios, which implies
a lightly loaded disc. This theory was used for the first time to
study “wake flutter” in Refs. 23 and 24, and the classical flap-
pitch stability boundary shown in Fig. 5 is modified by several nar-
row instability regions present above the flutter boundary shown in
Fig. 5.

Another useful aerodynamic theory developedin this time period
was Greenberg’s theory>® The theory recognizes that in addition to
constant velocity of oncoming flow the blade can also experience
a time-dependent, pulsating velocity variation caused by in-plane
motion (lead lag). Furthermore, in addition to harmonic variation
in angle of pitch a constant pitch angle is also imposed on the air-
foil. Greenberg’s theory is a modification to Theodorsen’s theory to
account for these effects. Thus, the unsteady lift on the blade cross
section is given by

2 dr? d

d(AV) ( b)dZAa]
+ (o + Aw) — x4 —=

1 L[ dh dAa
L= =paab?| — + Vot AV)—

dr 2 ) dr?

dh dA
+pAaVbC(k)|:E + oAV + VoAa + (b —x,) dta]

+paaVb[Voay + AcV C(2K)] @)
T ————

where V=V, +AV; AV =0, Vye“’; and ay=constant pitch
setting.

The last two terms in this theory represent, respectively, the static
lift (underlined) and a nonlinear term in the perturbation quantities
(underbraced), which is usually neglected in rotary-wing applica-
tions of this theory. Greenberg’s theory is approximate because it
neglects the effect of fore and aft excursions of the blade or the
effect of the pulsating flow velocity relative to the mean velocity on

the wake. Reference 33 also provides an appropriate expression for
the moment. Although Loewy’s theory was applied to RWA aeroe-
lastic problems shortly after its initial development, Greenberg’s
theory was not used until the mid-1970s, when its value was finally
recognized.

Another concern associated with aerodynamic loading that ma-
terialized during this period was stall flutter. An important early
investigation of stall flutter was conducted by Ham.>* Retreating
blade stall on a model rotor in forward flight was considered, and
large torsional motion with a frequency close to the blade torsional
natural frequency was found after the blade entered the stall region.
The sensitivity of the blade torsional amplitude to several parame-
ters was studied. Increases in speed and rearward shift of the blade
cross-sectionalcenter of gravity caused increasesin the amplitude of
torsional oscillation. However, increases in torsional damping and
torsionalstiffness reduced the amplitudes. The physical mechanism
causing the vibration was associated with reductionin aerodynamic
pitch damping caused by stall, which led to large-amplitude tor-
sional loads and high blade loads.

In an importantsequel to this study, Ham and Young®® conducted
a study of stall flutter using a model rotor in hover. A single-degree-
of-freedom limit-cycle torsional oscillation, with a frequency close
to the naturaltorsionallag frequencyof the blade, was found to occur
at high collective pitch settings. The origin of this torsional motion
was indicated by experimental study of chordwise pressure variation
on the model rotor during the stable limit-cycle oscillation. Using a
simple analysis, the relationships between the torsional motion and
the effective damping in pitch in presence of stall are determined.
Also the effect of reduced frequency on limit-cycle amplitudes was
experimentally measured. The implication of the results obtained
for the case of forward flight were also discussed, and a simple
numerical method for approximating the boundary of stable pitch-
torsional oscillation in forward flight was described and shown to
produce good correlation with flight-testresults.

B. Coupled Rotor-Fuselage Problems

In addition to isolated blade stability and response problems just
discussed, one also encounters coupled rotor-fuselage problems as
depictedin Fig. 8. Two types of problems were encountered. When
the helicopteris on the ground, a mechanical instability couples in-
plane blade motion with displacementof the axis of rotation caused
by roll or pitch; this is usually denoted by the term “ground res-
onance. The second instability is in flight, and again it is caused
by coupling between blade in-plane (lag) motion and body roll or
pitch. This aeromechanical problem is usually denoted by the term
air resonance. This terminology is unfortunatebecauseneither phe-
nomenon has anything to do with resonance.

Early in the development of rotorcraft, ground resonance and its
avoidance were identified as major design issues. The first defini-
tive study of ground resonance was carried out by Coleman and
Feingold.*® This report is a collection of the work done earlier by
those two authors on two bladed rotors on isotropic and anisotropic
supports, as well as rotors having three or more blades. The ground
resonance represents coupling between a low-frequency lag mode
(in the nonrotating frame) and a natural frequency of the structure

Tail rotor
Torsion Q _\

Flap

4-bladed
main rotor /

/QS/ROII

Fuselage /

Fig. 8 Coupled rotor/fuselage system.
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supporting the hub. This coupling produces lateral and longitudi-
nal displacement of the rotor center of gravity from the center of
rotation. Articulated rotors and hingeless rotors with lag frequency
below 1/rev are susceptible to this instability. Ground resonance is
very destructive. Although ground resonance was well understood
in this time period, only a limited understanding of air resonance
existed.

A valuable study conduced in the late 1960s*” examined the air-
and ground-resonance characteristics of a soft in-plane hingeless
rotor system used on an experimental XH-51A helicopter built by
Lockheed. The rotating fundamental lag frequency of soft-in-plane
rotors is below 1/rev. The particular rotor considered in this study
had a “matched stiffness” configuration, which eliminated part of
the elastic coupling between the flap and lag degrees of freedom
and causes the rotor to be more susceptible to the flap-lag type of
instability. The paper has an excellent graphical description of the
mechanism of ground/air resonance for soft-in-plane hingeless ro-
tors, which occurs when the rotor rpm is is such that Q& — w;, is
close to a body natural frequency. In this case the center of grav-
ity of the rotor disk is whirling about the center of rotation at an
angular velocity w;,, as shown in Fig. 9. The @ — w;, curves relate
body frequencies, as shown in Fig. 10. For the articulated rotor
helicopter a critical body frequency for ground resonance coin-
cides with the driving frequency when the rotor speed is at a value
below the operating speed, which corresponds to the leftmost cir-
cle on the figure. The coincidence between the inclined dash—dot
line with the double line marked (on the ground) indicates ground
resonance. The soft-in-planerotor tested and describedin the paper
can encounter ground resonance when it is at an rpm above the op-
erating speed as shown by the intersection of the solid line and the
double line denoted (on the ground); however, it can encounter air
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Fig. 9 Rotor-in-plane mode in the nonrotating system.
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Fig. 10 Driving and body frequency relationships.

resonance if the rotor is slowed in flight, as indicated by the inter-
section of the solid line and the double line (in the air). As a result of
the special construction of the rotor, both ground and air resonance
were demonstrated experimentally, and analytical results were cor-
related with experimental data. However, the conclusions reached
in this study were not definitive, mainly because of incomplete
understanding of the appropriate structural dynamic modeling of
hingeless rotor systems.

C. Summary of the State of the Art

To setthe stage for a discussionof the nexttime period,a summary
of the state of the art for the early time period is useful:

1) The pitch-flap and pitch-lag instabilities of articulated rotors
were reasonably well understood, particularly for the case of hover.
However, there was considerableconfusionaboutthe flap-lagtype of
instability. The unsteady aerodynamics was approximated by using
Theodorsen- and Loewy-type unsteady aerodynamics.

2) For the case of forward flight, there was some understandingof
the role of equations with periodic coefficients and its mathematical
implications. However, there was little appreciation for effective
numerical methods for dealing with such equations. There was also
growing appreciation for the importantrole of retreating blade stall
and stall flutter.

3) There was a good understandingof the ground-resonanceprob-
lem, particularly for articulated rotors. The important role of lag
dampers for preventing this problem was also appreciated.

However, despite the remarkable progress made and the success-
ful design, engineering analysis, and production of a large number
of successful helicopters, the state of the art had major deficien-
cies that needed to be overcome before additional progress could be
made. These deficiencies are summarized here:

1) The flap-lag instability problem was not well understood.

2) There was only limited appreciation of systematic approaches
to formulating and solving RWA problems.

3) Hingeless rotor aeroelastic behavior and air resonance were
not understood.

4) There was no appreciation for the important role of structural
dynamic models capable of representing coupled flap-lag-torsional
dynamics in formulating RWA problems.

5) The role of geometric nonlinearities in RWA was not well
understood.

6) Unsteady aerodynamic models, wake models, and dynamic
stall models were not available.

7) Treatments of the true RWA problem, as represented by the
coupledflap-lag-torsionalproblemin hover and forward flight, were
not available.

III. Golden Age (1970-2000)

A. Overview of Principal Developments

This period was characterized by rising to the challenges posed
by the unsolved problems summarized at the end of the preceding
section. The accomplishments of this period were summarized in
the various survey papers mentioned in the introductory portion of
this paper. Before discussing the most important accomplishments
in detail, it is useful to distinguish between two types: 1) accom-
plishments in modeling the aeroelastic behavior of rotor blade and
coupledrotor-fuselagesystems and 2) developmentof modern rotor
systems, such as hingeless and bearingless, used on various rotor-
craft being produced worldwide. Clearly, these two types of accom-
plishments are intertwined because modern rotor systems cannot
be developed without certain aeroelastic modeling capability. Also,
new modeling capabilities are being developed to meet the chal-
lenges of the hardware designer. Emphasis in this paper is on the
most important developments in aeroelastic modeling techniques.

Some key developments in modeling of aeroelastic behavior
that have occurred during this period are listed here: 1) recog-
nition of the fundamental role of structural modeling and asso-
ciated kinematic assumptions in the proper formulation of the
RWA problem; 2) unsteady aerodynamics for attached and sep-
arated flow; 3) development of systematic tools for formulating
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and solving RWA problems; 4) understanding of the basic cou-
pled flap-lag aeroelastic problem in hover and forward flight; 5)
understanding of the coupled flap-lag-torsional problem in hover
and forward flight; 6) understanding of air and ground resonance;
7) modeling of composite rotor blades; 8) modeling of hingeless,
bearingless, and swept tip rotor blades; and 9) development of
comprehensive analysis codes capable of modeling several RWA
problems.

A detailed description of all of these items within the framework
of a single paper is quite difficult, and therefore one has to be selec-
tive so as to limit the paper to a reasonable length.

B. Role of Structural Modeling

Initially, structural models for isotropic rotor blades were
linear,”%3® and thus no distinction was made between the deformed
and undeformed blade configurations. The aeroelastic formulations
developedin thelate 1960s were allbased on the Houboltand Brooks
equations.” In the late 1960s and early 1970s it was recognized that
geometrical nonlinearities caused by moderate deflections needed
to be incorporated in the aeroelastic operators associated with the
rotary-wing aeroelastic problem. The distinction between the un-
deformed and deformed blade geometries also produces nonlinear
terms that have to be included in the inertia and aerodynamic opera-
tors. Moderate-deflection beam theories capable of representing the
coupled flap-lag-torsionaldynamics of rotor blades were developed
primarily between 1970-1980, and during the next decade large de-
flection theories were derived. The inception of moderate deflection
theories can be found in two dissertations that were published in
the same year.>**? An integral part of moderate deflection theories
was ordering schemes, which allowed one to neglect higher-order
terms in the structural, aerodynamic, and inertia operators asso-
ciated with the aeroelastic problem. Subsequently, the equations
evolved, and more careful derivation of the structural part resulted
in equations that have formed the basis of numerous aeroelastic
studies*1:42

The source and structure of the geometrically nonlinear terms
associated with structural rotations are conveniently illustrated by
a transformation between the triad of unit vectors describing the
deformed and undeformed state of a hingeless blade, as shown in
Fig. 11. Only four independent functions (three displacement vari-
ables and one rotation) are needed for the exact form of this transfor-
mation because of a constraintthat the plane in which the vectorse,
ande. lie remains normal to the deformed beam elastic axis. If these
vectors are, in turn, assumed to lie in the deformed beam cross sec-
tion, then this constraintbecomes analogous to the Euler—Bernoulli
hypothesis for a large-deformation theory. Such a transformation,
based on the assumption of small strains and finite rotations (asso-
ciated with the twist angle and bending slopes), has the following
mathematical form:

o

)
>
=

=[S] &)

> X
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B

where the elements of the transformation matrix [ S] determine the
accuracy or order of the theory. A typical transformation where
terms up to the third order are accounted for is given here:

S11 =1- %(Uz), + wi),

Si2 = vy, Si3 = w,

_ 1 2 — 1.2
S21 - _(U.X - ¢w.x + Ev.Xw./\»)5 S22 =1- EU.X - ¢U.xw.x

S=¢—twle,  Sy=—(w,—-d? - w,)
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Such a transformation can be assumed to imply the existence of
an ordering scheme in which third-order terms, in terms of blade
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Fig. 11 Geometry of the blade elastic axis before and after deformation
(top) and blade cross-sectional geometry before and after deformation
(bottom).

slopes, are neglected. Such an ordering scheme implies
O +0() =200 @)

where blade slopes are assumed to be moderate and of magnitude
€, thatis, 0.10 <€ <0.20. Use of a less accurate ordering scheme

O + 0> =00 (8)

will lead to the neglectof the third-orderterms in Egs. (6). A word of
cautionis in order at this point. To allow for the treatment of applied
moments, the virtual rotation must be obtained as a function of the
deformation variables. The variation must be taken prior to the ne-
glect of the third-order terms; otherwise, the expressions for virtual
rotation will be incorrect(see Refs. 43 and 44 for more detail on this
point). Transformationsof the form of Eq. (5) have been used as the
basis for moderate-deflection beam theories, which are suitable for
the aeroelastic stability and response analysis of isotropic hingeless
and bearinglessrotor blades. Once a transformationrepresented by
Eq. (5) is available, it is used to derive the inertia and aerodynamic
loadsacting on the blade. Thus, these terms permeate throughthe en-
tire set of equations of motion describing the dynamics of the blade.

Consider as an example the treatment of the coupled flap-lag-
torsional dynamics of an isolated blade in forward flight. For this
case the ordering scheme would be based on the order of magnitude
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assumptions given here:

0 =6 = 61, = O(1)

u=x/R=x4/R=0(), Cuja=0(c?)

0
x/l:—x=—=u=(9(1) “

Application of such an ordering scheme leads to the neglect of nu-
merous higher-order terms. Furthermore, modern computer pack-
ages capable of algebraic manipulation, such as Mathematica®, can
be used together with an ordering scheme to generate equations with
a desired level of accuracy®

Finally, such a scheme is based on common sense and experience
with practical blade configurations. Thus, it should be applied with
a certain degree of flexibility.

Structural models for moderate, as well as large deflection beam
(or blade) theories, have been often validated by correlating them
with experimental data obtained in a static experimentconducted at
Princeton *®

The development of moderate deflection beam theories was fol-
lowed by structural models that use only the smallness of the ex-
tensional strain; otherwise, the analysis allows for arbitrarily large
deflections and rotations. This approach completely eliminates the
need for an ordering scheme. This type of model is more consis-
tent and mathematically more elegant than blade models based on
ordering schemes. References 47-50 are representative of the first
studies that have established this more accurate approach.

When the strain is assumed to be small, two developments are
feasible, depending on the representation of the cross-sectional de-
formation. Consider the rotation of the deformed beam sectional
frame, which is assumed to be arbitrarily large; this is denoted as
global rotation. Furthermore, consider the rotation of a material el-
ement at some point in the cross section caused by cross-sectional
deformation. This so-called local rotationis relative to the deformed
beam sectional frame. The simpler development assumes that local
rotation is of the order of the strain, whereas the more general one
assumes that the local rotation is of the order of the square root of
the strain. In either case the beam deformation can be expressed
in terms of six generalized strain measures: the extension of the
reference axis, two shear strains at the reference axis, the elastic
twist, and two elastic bending measures. Because of the presence of
shear-strain measures, three independent orientation variables must
be allowed, as in Ref. 47. That is, it is not possible to express two
of the orientation variables in terms of the derivatives of the three
displacement variables. Also, although not necessary for static and
low-frequency analysis of composite rotor blades, the presence of
shear strain in these developmentsimproves their accuracy in appli-
cations to composite rotor blade analysis when transverse bending
modes higher than the first are involved.

C. Unsteady Aerodynamics for Attached and Separated Flow
Accurate modeling of the unsteady aerodynamic loads required
for aeroelasticstability and response calculationcontinuesto be one
of the major challenges facing both the analyst and the designer.
The combination of the blade advancing and rotational speed is a
formidablesource of complexityin the flowfield surrounding the ro-
tor. At large values of the advance ratio, the aerodynamic flowfield
around the blade undergoes such variations that there are problems
of transonic flow, with the shock waves on the advancing blade tip,
problems of flow reversal (reversed flow region) and low-speed, un-
steady stall on the retreating blade, and problems caused by high
blade-sweep angle for various azimuthal locations. Modern swept
and curved-tip blade geometries further complicate this problem.
Furthermore, the time-varying geometry of the wake, which is an

important source of unsteady loads, vibration and noise, is an ex-
cruciatingly complex problem that is an order of magnitude more
complicated that the wake geometry of fixed wings.

When dealing with the unsteady aerodynamic problem, one can
make a wide array of assumptions, which lead to diverse models,
starting with simple and computationally efficient models and cul-
minating in models, which are capable of simulating the more in-
tricate details of the unsteady flow. A detailed description of un-
steady aerodynamic models for rotary-wing applications has been
presented in books,!”:!? as well as a couple of review papers.!:32

1. Attached-Flow Unsteady Aerodynamics

From the first partof this paper, itis evidentthat the unsteady aero-
dynamic models available were limited to two-dimensional incom-
pressible theories such as Theodorsen, Greenberg** and Loewy.*?
Because of the low reduced frequency associated with RWA prob-
lems, unsteady aerodynamic effects have been found to be of less
than critical importance. Furthermore, because of its wake struc-
ture Theodorsen’s theory is not suitable for rotary-wing application,
whereas Loewy’s theory is limited to lightly loaded rotors.

It is also important to recognize that both are frequency domain
theories, which are not suitable for forward flight, where the equa-
tions of dynamic equilibrium have periodic coefficients. For con-
venient mathematical treatment of equations with periodic coeffi-
cients, time-domain theories are required. Therefore, Greenberg’s
theory with appropriate modifications’>~>® has been often used in
RWA, with the assumption that the aerodynamics are quasisteady,
C (k) = 1. For this case the theory was also used in forward flight.

Loewy’s theory has been extended to include compressibility ef-
fects. However, these theories have been rarely used in coupled
flap-lag-torsional analysis in hover.3?

Frequency-domain theories have a significant deficiency when
being applied to aeroelastic stability calculations because the as-
sumption of simple harmonic motion upon which they are based
implies that they are strictly only valid at the stability boundary.
Thus, they provide no information on system damping before or
after the flutter condition is reached, and standard stability anal-
yses based on conventional eigenanalysis, such as the root locus
method, cannot be used. Furthermore, as indicated before, these are
not suitable for rotary-wing aeroelasticanalyses in forward flight or
applications where the transient response of the aeroelastic system
is required. Thus, there is a need for unsteady aerodynamic theories
thatare capable of modeling unsteadyaerodynamicloads in the time
domain for finite-time arbitrary motion of an airfoil, representing
the cross section of an oscillating rotor blade. The term “arbitrary
motion” is used here to denote growing or decayingoscillations with
a certain frequency. A number of such theories were developed,and
Refs. 5 and 57 contain a unified description of such theories.

Time-domain airfoil theories are extensions of previous
frequency-domain theories, using an approach developed by
Edwards®® to extend Theodorsen’s theory to the time domain. Time-
domain versions of Greenberg’s theory can be found in Ref. 59, and
a time-domain version of Loewy’s theory was presented in Ref. 60.

A particularly useful time-domain theory, which has been used
frequently in rotary-wing aeromechanical applications, is the dy-
namic inflow model, which was developed and used first at the be-
ginning of the 1980s.°'~% The mathematical form of the dynamic
inflow model in both hover and forward flight clearly indicates that
itis an arbitrary motion, time-domain theory. The most widely used
version of dynamic inflow is that developed by Pit and Peters,%
whichis suitableforboth hoverand forward flight. The modelrepre-
sents unsteady global wake effectsin a simple form and is applicable
to the entire rotor. The assumption in this theory is that, for rela-
tively low frequencies, actuator disk theory is valid for both steady
and unsteady conditions. Therefore, dynamic inflow is essentially a
low-frequency approximation to the unsteady aerodynamics of the
rotor. The total induced velocity on the rotor disk is assumed to
consistof a steady inflow A, (for trim loadings) and a perturbational
inflow, denoted § A, as a result of transientloadings. The total inflow
is expressed as:

A=A+ A (10)
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where §A is assumed to be given by

r r\ .
6A=A1+A16(E) COSW—G—AU(E) sin (11)

in which the inflow variables A, A,., and A, are related to the
perturbational thrust coefficient, roll and pitch-momentcoefficients
acting on the rotor through the following relation:

)‘\,1 )\.1 CT
(M1 { A ¢ +IL1 " {hic g =4 —Cuy (12)
).‘-lx )‘-lx CMX P.A.

P.A. stands for perturbational aerodynamics. The elements of [M]
and [L]~! can be obtained either theoretically, by using momen-
tum theory,®> or experimentally. Dynamic inflow models have been
particularlyuseful for coupled rotor-fuselageaeromechanical prob-
lems in both hover and forward flight, and they have been used for
isolated rotor stability analyses ®*

Subsequently, the concept of dynamic inflow has led to the de-
velopment of a complete unsteady aerodynamic model applicable
to RWA.%>% In this theory the induced flow on the rotor disk is ex-
pandedin Fourier coefficients (azimuthally)and spatial polynomials
(radially). The coefficients of these expansion terms are shown to
obey a closed-form set of ordinary differentialequations with blade
loading (from any source) as the forcing functions. The obvious
advantage of such an approach is that the resultant equations can
be used for arbitrary motions in the time domain (time-marching
or Floquet), in the frequency domain (harmonic balance), or in the
eigenvalue domain (conventional stability analysis) to any degree
of resolution as dictated by the application.

This theory is derived from the linear potential equations with a
skewed cylindrical wake. Wake contraction can also be modeled.
For hover the results of this theory agree with Loewy’s model. A
convenient feature of this theory is that it can be easily coupled
with Floquet solution of the equations of motion in forward flight.
A shortcoming of the theory is that it cannot model the important
effect of blade-vortex interaction, which can be captured only by
free wake models.

2. Separated-Flow Unsteady Aerodynamics—Dynamic Stall

Dynamic stall is a strong nonlinear unsteady aerodynamic effect
associated with flow separation and reattachment, which plays a
major role in aeroelastic stability and response calculations. Good
descriptions of dynamic stall can be found in Refs. 17 and 19. In
the early years dynamic stall was not well understood, and models
that would allow one to incorporate dynamic stall in an aeroelastic
analysis were not available.

Dynamic stall is associated with the retreating blade and borders
on the reversed flow region, as shown in Fig. 12. For such condi-
tions the angle of attack of the blade cross section can be very large.
Although the torsional response of the blade is relatively low under
normal conditions, at the flight envelope boundary, where dynamic
stall effects are pronounced, large transient-torsionalexcursion can
be excited, accompanied by low negative damping in pitch. This, in
turn, generates excessive control and blade vibratory loads, which
impose speed and load limitations on the rotor system as a whole. It
can also cause stall flutter. Because of its importance, dynamic stall
has been the subject of a large number of studies, which have led to
a good physical understandingof this complex aerodynamic effect.
Some of the earlier work on this topic was done by Ham,%” and sub-
sequent experimental and analytical work of Carr®® and McCroskey
and his associates®® has led to improved physical understanding
of this phenomenon. Attempts at simulation of dynamic stall us-
ing computational fluid dynamics have not been successful in re-
producing the quantitative characteristics at operational Reynolds
numbers. The need to incorporate the important dynamic-stall ef-
fects in rotary-wing aeroelastic stability and response calculations
has led to the development of semi-empirical dynamic-stall mod-
els that capture the most important features of dynamic stall with
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Fig. 12 Schematic illustration of reversed flow region and dynamic-
stall region.

reasonableaccuracy. Semi-empirical models can reproduce the hys-
teretic lift, moment and drag curves for a given airfoil quite accu-
rately. These models have a number of common features. They are
intended to incorporate two-dimensional airfoil unsteady aerody-
namic effects in analytical studies in the time domain, and they are
suitable for stepwise numerical integration in time. All models are
empirical, and various free parameters in the model are determined
by fitting the theory to experimental data obtained from oscillating
airfoil tests.

Several dynamic-stall models have been developed. However,
only two have withstood the test of time and are in widespread
use currently. These are the ONERA and the Leishman—-Beddoes
dynamic-stall models. Both distinguish between two principal flow
regions: the attached, and the separated-flow regions.

The ONERA model developed by Dat,’! Dat et al.,”" and Tran
and Petot’! is based on the time-domain representationof the airfoil
section operating before, during, and in the poststall regime while
it performs essentially arbitrary motions. The model utilizes the
properties of differential equations to simulate the different effects
thatcan be identified on an oscillating airfoil, such as pseudoelastic,
viscous and inertial effects, and the effect of the flow time history.
The theory alsorecognizesthat, in the linearrange of airfoil motions,
Theodorsen’s lift-deficiency function represents the aerodynamic
transfer function for the airfoil, relating the downwash velocity at
the three-quarter chord to circulatory lift. Furthermore, the theory
is based on approximating the aerodynamic transfer function by
rational functions. In the nonlinear range the model consists of a
system of differential equations containing unsteady linear terms
whose coefficients are functions of the angle of attack and steady-
flow nonlinear terms.

The ONERA model has been modified and improved by Rogers’>
and Peters.” These changeshave produceda modified theory, which
in the attached-flow region is consistent with classical unsteady
aerodynamics and in which circulation has been introduced as a
new dependent variable. The ONERA model contains an approxi-
mate correction for compressibility and no correction for the effect
of sweep. The most recent version of this model was documented
by Petot.”* The coefficients in the equations of this model are deter-
mined by parameteridentification from experimental measurements
on oscillatingairfoils. The model requires 22 empirical coefficients.
Figure 13 shows typicalhystereticlift and moment coefficients com-
puted with the ONERA dynamic-stall model for a NACA 0012
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Fig. 13 Typical hysteretic lift and moment coefficients computed with
the ONERA dynamic-stall model.

airfoil at M =0.379, k = 0.075, and a time-varying angle of attack
o =10.3 deg +8.1sinwt.

The Leishman—Beddoes model was developed originally by
Beddoes in the mid-1970s.7>7¢ Subsequently, it was extended by
Leishman,””~7° and it has become a comprehensive and mature
model. The modelis capable of representingthe unsteady lift, pitch-
ing moment, and drag characteristics of an airfoil undergoing dy-
namic stall. This model consists of three distinct components: 1) an
attached-flow model for the unsteady linear airloads,2) a separated-
flow model for the nonlinear airloads, and 3) a dynamic-stallmodel
for the leading-edge vortex-inducedairloads. The model contains a
rigorous representation of compressibility in the attached-flow part
of the model, using compressible indicial response functions. The
treatment of nonlinear aerodynamic effects associated with sepa-
rated flows are derived from the Kirchoff-Helmholtz model to de-
fine an effective separationpointthatcan be generalizedempirically.
The model uses relatively few empirical constants, with all but four
derived from static airfoil data.

3. Wake Models

The description of aerodynamic loading is incomplete without
mentioning wake models. A detailed description of wake models
and their historical development is outside the scope of this paper,
but can be found in Chapter 10 of Ref. 19. Accurate modeling of
the wake and, in particular, free-wake models plays a critical role in
aeroelasticresponseand blade vibratoryload calculations.However,
it appears that accurate modeling of the wake is less important for
aeroelastic stability analyses.

D. Development of Systematic Methods for Formulating and Solving
Rotary-Wing Aeroelastic Problems
1. Formulation of Equations of Motion

Formulation of complete aeroelasticequations of motion requires
a combination of structural, aerodynamic, and inertia terms. It is in
this area that very significant advances have been made compared
to the early period when equations of motion were formulated using
ad hoc methods augmented by good physicalinsight. The structural

and aerodynamic ingredients have been described in the preceding
sections. The inertia loads are obtained in a straightforwardmanner
by using D’Alambert’s principle and combining it with Newton’s
Second Law. The transformation between the undeformed and de-
formed states represented by Eq. (5) determines the position vector
of a mass point in the deforming blade, and the acceleration vector
is given by using vector mechanics:

Aa=R+22XxR+ QxR+ Q2 x (xR (13)

Although the derivation of the inertia terms is conceptually sim-
ple, the practical implementation can be tedious from an algebraic
point of view, particularly when one is interested in coupled ro-
tor fuselage aeromechnical problems. In the 1970s and early 1980s
equations of motion used to be derived manually leading to long
and algebraically cumbersome expressions. Examples illustrating
the complexity of the equations for isolated blade aeroelastic prob-
lems in forward flight®®8! or coupled rotor-fuselage problems®?-34
clearly indicate the tedious nature of such tasks, even when ordering
schemes are used. Furthermore, when advanced aerodynamicssuch
as dynamic-stallor wake models are used® it is impossible to obtain
explicit equations of motion.

The equations are partial differential equations, and their solu-
tionrequires discretizationto eliminate the spatial dependence.Dis-
cretizationand the solution of the equationrequires furtheralgebraic
effort. Finally, the finite element method, which was first used for
a rotary-wing aeroelastic problem in 1980 (Ref. 85) and has be-
come the most effective spatial discretization and solution method
currently used in RWA, tends to obscure the precise boundaries
between problem formulation and solution.

Since the early 1970s, two distinct approaches for formulating
isolated blade or coupled rotor-fuselage equations of motion have
emerged. The first approachis usually denoted the explicitapproach
becauseit leads to a set of detailedaeroelasticequationsof motion in
which all of the terms (aerodynamic, structural, and inertial) appear
in explicit form. Explicit equations are usually derived using order-
ing schemes to neglect higher-order terms in a systematic manner.
The outcome of this process consistsof a set of nonlinearpartial dif-
ferential equations in the space and time domain. These equations
can also containintegralexpressionscaused by centrifugaland other
terms. An alternative approach can be denoted as the implicit ap-
proach. In this approach the detailed expressions of the aeroelastic
equations of motion are avoided; instead, the aerodynamic, iner-
tia, and structural operators are usually generated in matrix form
inside the computer. When this approach is used, the boundaries
between the formulation and solution process, particularly in spa-
tial discretization, tend to be blurred. When the implicit approach
is used, ordering schemes are no longer required. Furthermore, the
implicit approach frequently mandates iterative solutions. For con-
venience and clarity the implementation of these two approaches
will be discussed by describing their application to two separate
classes of problems, namely, isolated-blade problems and coupled
rotor-fuselage problems.

Isolated-bladecase. A good example of explicit formulation of
equations of motion for the case of hover can be found in Refs. 41
and 54. Explicit formulations for forward flight can be found in
Refs. 80 and 81. The algebraic task for deriving such equations
was too cumbersome, and, therefore, with increases in computer
power these tasks have been relegated to the computer. One of the
first derivations of a set of coupled flap-lag-torsional equations of
motion for a hingeless rotor blade in forward flight, using a special
purpose symbolic processor written in FORTRAN, was presented
by Reddy and Warmbrodt.3

In the mid-1980s LISP workstations utilizing the MACSYMA
symbolicmanipulative packagebecame commercially availableand
were used to derive coupled flap-lag-torsionalequations for a hinge-
less blade in hover, including terms up to the third order.*>%7:3% By
the early 1990s regular workstations could be used in conjunction
with MACSYMA to obtain explicit equations for hingeless rotor
blades in forward flight in a routine manner.¥-%
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Another approach for avoiding the algebraic derivation associ-
ated with the formulation of the RWA problem is to use the finite
element approach. For this approach the equations of motion are
generated in a numerical form, as part of the solution process. The
approach can be used to obtain either explicit or implicit formu-
lations and solutions. This approach will be described later in this
paper because the finite element formulation is strongly linked to
the solution methodology.

Coupled rotor-fuselage case. Formulation of coupled rotor-
fuselage equations for a typical configuration, like that shown in
Fig. 8, has similarities to the isolated-blade problem, although a
number of substantialdifferencesdo exist: 1) the equations are more
complicated because of numerous additional terms associated with
the fuselage rigid-body degrees of freedom, which contribute to
the complexity of the inertia and aerodynamic loads; 2) if ordering
schemes are used, combined with an explicit formulation, a mod-
ified form of the ordering scheme has to be used to restrict the
equations to a manageable size; 3) rotor-fuselage coupling has to
be performed in a careful and systematic manner; and 4) when the
fuselageitselfis also consideredas a flexible body, a further compli-
cation in problem formulation emerges. Again, like in the isolated
blade case, both explicit and implicit formulations of the coupled
rotor-fuselage problem are available.

The early derivations, developed in the late 1970s, for this class
of problems were explicit, usually done manually and resulted in
lengthy equations. References 91 and 92 good examples of coupled
rotor-fuselage equations in hover, whereas Ref. 84 is representative
of typical equations for forward flight. In the same period Johnson®?
has developed a coupled rotor-fuselage model suitable for forward
flight using an implicit approach. In the studies just mentioned, the
fuselage was assumed to be rigid. In the mid-1980s there was a
need to obtain coupled rotor-fuselage equations capable of mod-
eling single- and twin-rotor configurations in hover and forward
flight, and thus these were derived and solved in Refs. 83 and 94.
The fuselage was modeled as a flexible beam with bending and
torsional degrees of freedom. This study represents one of the most
complicatedexplicitsets of equationsderived manually. Three years
later they were rederived using MACSYMA and found to be error
free.

Obviously, this class of problems is an ideal candidate for sym-
bolic derivation of equations motion. The first explicit formulations
based on symbolic manipulation were carried out in Ref. 95.

An interestingimplicitapproach,based on a hybrid finite element
combined with a primitive multibody formulation, was used in the
GRASP program.”® The required matrix elements were generated
by numerical evaluation of hierarchical expressionsin the code. As
one of the first multi-flexible-body approaches applicable to rotor-
craft, GRASP possesseda lot of modeling flexibility. Unfortunately,
however, the only version released until the time development was
halted was limited to the hovering flight condition.

2. Methods of Solution

The solution of rotary-wing aeroelastic stability and response
problemsis usually carried outin two stages. The first stage consists
of the spatial discretization of the equations of motion followed by
a solution in the time domain. In the second stage, namely, the
time-domain solution, two different approaches are possible; one
can solve the equation in a blade-fixed, rotating coordinate system
or in a hub-fixed, nonrotating coordinate system. One also needs to
distinguishbetween solutions for hover and those for forward flight.

Spatial discretization. The first step in the solution of rotary-
wing aeroelasticstability or response problems is elimination of the
spatial dependencein the nonlinear partial differentialequations (or
appropriate energy expressions), which describe the system. Appli-
cation of suitable discretizationmethods will yield a set of coupled,
nonlinear, ordinary differentialequationsin the time domain. Three
approaches for spatial discretizationhave been used: 1) spatial dis-
cretization based on global methods, 2) spatial discretizationbased

on the finite element method, and 3) spatial discretizationbased on
matrix method. The third approachis mentioned only for historical
reasons. This approach has not withstood the test of time and will
notbe discussedhere, but informationon this approachcan be found
in Ref. 9.

During the 1970s, the preferred discretization methods were
global, such as the well-known Rayleigh-Ritz or Galerkin methods,
as shown in Refs. 3, 54, 86, and 97 based on free-vibration modes
of the rotating blade. For hover, both coupled and uncoupled modes
havebeenused, where the coupling of modes is caused by the collec-
tive pitch setting. For forward flight the use of uncoupled modes is
more convenient because cyclic pitch introduces time-varying cou-
pling. Discretization based on global modes is cumbersome and is
besthandled by symbolic computationor numericalimplementation
using Gaussian quadrature.

Since 1980, the finite element method has emerged as the most
versatile spatial discretization method. In addition to eliminating
the algebraic manipulative labor required for the solution of the
problem, it also serves as the basis for the implicit formulations
discussed in the preceding section. Furthermore, the finite element
method is ideally suited for modeling composite rotor blades and
complicated redundant structural systems such as encountered in
bearingless rotors. For rotary-wing aeroelastic problems two ap-
proaches have been used: 1) weighted residual Galerkin-type finite
element methods and 2) local Rayleigh-Ritz finite element method
using conventional as well as higher-order elements. Recognizing
that the rotary-wing aeroelastic problem is geometrically nonlinear,
it should be emphasized that finite element formulation for this class
of problems is more intricate than its fixed-wing counterpart.

The first finite element treatment of the rotary-wing aeroelastic
problemin hover and forward flight, using a Galerkin-typeweighted
residual finite-element method, can be found in Refs. 85, 98, and
99. First, the coupled flap-lag problem was treated,*>**® and subse-
quently the coupled flap-lag-torsional problem was formulated.?
The geometry for this problemis shown in Fig. 14. The bending de-
grees of freedom were interpolated using cubic (or Hermite) inter-
polation, whereas quadratic interpolation was used for the torsional
degree of freedom (not shown). In Refs. 85, 98, and 99 an explicit
formulation was used; however, later the same method was used in
an implicitformulationto solve the coupled flap-lag-torsional prob-
lem of straight and swept-tip hingeless rotor blades in hover and
forward flight.100-10!

The local Rayleigh-Ritz type finite element method was first used
by Sivaneri and Chopra!>!% to study the behavior of hingeless'®?
and bearingless'® rotors. Again, the bending degrees of freedom
were treated using Hermite interpolation,and torsion was treated by
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Fig. 14 Geometry of the elastic axis of the hingeless deformed blade
and schematic representation of the finite element model.
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linear interpolation!?? Ritz-type higher-order finite elements were
combined with an implicit formulation and used in the GRASP
program to solve aeroelastic problems in hover.”®

Time-domain solution of the equations. After spatial discretiza-
tion the equations of motion are reduced to nonlinear ordinary dif-
ferential form. In forward flight these equations have periodic coef-
ficients. The mathematical structure of these general equations can
be written in the following symbolic form*:

(Mg} + [COHNg + [KW)NHgt = {F (¥, q. 9} (14)

whereitis understoodthat the matrices [M ] and [C (¥)] containboth
aerodynamicand inertial contributions, whereas the matrix [K (¢)]
contains aerodynamic, inertial, as well as structural contributions.
All nonlinear effects are combined in a vector {Fy. (¥, q, q)}.

When time-domain unsteady aerodynamics such as Eqs. (12) are
used, these equations have to be appended to Eqgs. (14) and solved
jointly.®" When discussing methods of solution for Eq. (14), it is
convenient to consider hover and forward flight separately. It is
alsouseful to distinguishbetween isolated-bladeand coupled-rotor-
fuselage analyses.

Consider the first isolated blade case in hover. For this case
Eq. (14) has constantcoefficients. Linearizing the equations about a
nonlinearequilibriumposition gives a good approximationto aeroe-
lastic stability boundaries>*3%3*85 Thus, it is common practice to
write perturbation equations that are linearized about the nonlinear
static equilibrium position. This equilibrium position is obtained
from the solution of a system of a system of nonlinear algebraic
equations. These equations are usually solved by Newton—Raphson
iteration>*!% Lack of convergencecan be indicative of divergence.
Stability boundaries are obtained from solving the standard eigen-
value problem for the linearized system. The real part of the eigen-
values determines the aeroelastic stability boundaries of the blade.
This approachalso predicts reliable stability boundariesin the pres-
ence of static stall.!®> This basic approach has evolved during the
1970s and has been used ever since then without any significant
changes.

Consider next the isolated blade in forward flight, and assume
that dynamic-stall effects are neglected. The aeroelastic stability
and response problem is based again upon Eq. (14). Reliable solu-
tions for stability can be obtained by linearizing the nonlinear equa-
tions of motion about an appropriate equilibrium position 32-86:97:106
In forward flight the appropriate equilibrium position is a periodic
solution of Eq. (14). Calculation of the time-dependent periodic
equilibrium position, representing the blade response solution, is
inherently coupled with the trim state, or flight mechanics, of the
complete helicopter in forward flight. The degree of sophistication
with which this coupling is accomplished can affect the accuracy
of the aeroelastic analysis. The trim state of a typical helicopter is
depicted in Fig. 15.

Two different trim procedures*®’'% have been used: 1) propul-
sive trim, which simulates actual forward flight conditions where

Shaft Axis

Fig. 15 Geometry showing trimmed aircraft in propulsive trim.

horizontal and vertical force equilibrium is maintained and zero
pitching and rolling moments are enforced, and 2) moment or wind
tunnel trim, which simulates conditionsunder which the rotor would
be tested in a wind tunnel. Horizontal and vertical force equilibrium
is not enforced because the helicopter is mounted on a supporting
structure. Therefore, only the requirement of zero moments on the
rotor is imposed.

Initially, the trim proceduresused in the mid 1970s to mid 1980s
coupled trim only partially to the aeroelastic analysis, and the first
time trim requirements on all three flap, lag, and torsional degrees
of freedom were imposed was in Ref. 86. However, from the late
1980s onward coupled trim/aeroelastic analyses have been used in
a routine manner.

The most widely used method for solving the forward flight prob-
lem is based on the directsolution of Eq. (14) in the rotating system,
by using the theory of differential equations with periodic coeffi-
cients. This approach is facilitated by rewriting Eq. (14) in first-
order, state-variable form

)} =z} + [ILOHHy(W)} + N y. 3} (15)

where {z(y)}and [L ()] are periodicmatrices with common period
27, and {N (¥, y, y)} represents the nonlinear contributions, and

b=y (16)

Itis evident from Eq. (15) that the aeroelastic stability and response
problem are coupled. Therefore, solutions have to be obtained in
two stages**7 First the nonlinear time-dependentequilibrium posi-
tion of the blade is obtained, and next the equations are linearized
about the time-dependentequilibrium position by writing perturba-
tion equation about the periodic nonlinear equilibrium. This second
stage yields a linear periodic system for which blade stability can be
obtained using Floquet theory. In the early years there was consid-
erable confusionregarding the treatment of equations with periodic
coefficients. One of the first papers to point out that calculation of
the Floquet transition matrix at the end of one period, using numer-
ical integration, is an effective way for dealing with flapping dy-
namics of a rotor in forward flight was publishedin the early 1970s
(Ref. 107). A couple of years later it was shown'% that the transition
matrix at the end of a periodis a key ingredient for examining aeroe-
lastic stability in forward flight. An effective numerical technique
for calculating the transition matrix at the end of one period was
also presented.!® This approach was generalized in a later paper'®
that presented very efficient numerical techniques for dealing with
periodic systems by using Floquet theory. Later, the methods devel-
oped for the stability of linear periodic systems were extended to
obtain the response for the linear case, as well as the nonlinear case
using quasilinearization?” The importance of the treatment of equa-
tions with periodic systems has played an important role in RWA
in forward flight and numerous papers on this topic have been writ-
ten since the 1970s, including several survey papers.!'%!!! Three
distinct methods for calculating the nonlinear equilibrium position
associated with Eq. (15), about which the perturbation equations
are linearized, have emerged. These are quasilinearization;” peri-
odic shooting,''? and the finite element method applied in the time
domain.'?

An alternative approach to the solution of Eq. (14) is based on
the introduction of the multiblade coordinate transformation, which
transforms the variables {g} from the rotating, blade-fixed reference
frame, to a nonrotating, hub-fixed reference frame % !!0-114115 Fo].
lowing Hohenemser and Yin,!' these coordinates are frequently
used in rotor dynamics. Use of such a transformation implies that
the blade degrees of freedom in the blade-fixed system are re-
placed by a set of nonrotating coordinates that describe the mo-
tions of the hub plane and its deformation in a hub-fixed system.
In a symbolic form the multiblade coordinate transformation is
written as

{q) = By X} a7
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where {g} are the original coordinates in Eq. (14) and {X} are the
multiblade coordinates. A convenientstage to apply the multiblade
coordinates is after the process of linearization. In such cases for
rotors that have three blades or more, the multiblade coordinate
transformationenables one to replace the periodic system by a con-
stant coefficient approximation, which can be treated by conven-
tional eigenvalue calculation methods. Such an approximation is
usually reliable®2 for advance ratios u < 0.25, as indicated by
research conducted in the early 1980s. Multiblade coordinates are
convenientto use with dynamic inflow.

The use of multiblade coordinate transformation is particularly
useful for coupled rotor-fuselage problems in hover. In this case use
of these coordinates eliminates the periodic coefficients from the
equations of motion, for rotors having three blades or more 394115

Next, solution of the coupled rotor-fuselage problem in forward
flight is briefly discussed. The equations of motion for this prob-
lem have again the mathematical form represented by Eq. (14). For
levelflightconditions with constantadvanceratio y, bladenonlinear
equilibrium, in forward flight, is described by Eq. (14). Helicopter
trim and the equilibrium solution are extracted simultaneously us-
ing a numerical harmonic balance solution.!'%!1” The equations are
linearized by writing appropriate perturbation equations. After lin-
earizationamultibladecoordinatetransformationis introduced.The
original equation, Eq. (14), has periodic coefficients with a fun-
damental nondimensional frequency of unity; however, the trans-
formed system has periodic coefficients with a higher fundamental
frequency. These higher-frequency periodic terms have a reduced
influence on the behavior of the system and can be ignored in some
analyses at low advance ratios. Once the transformation is carried
out, the system is rewritten in first-order form

(x} =[AGW)x) (18)

where {x} contains {X} and {X}.

The fundamental frequency of the coefficient matrices depends
on the number of rotor blades N,. For an odd-bladed system the
fundamental frequency is N, per revolution, whereas for an even-
bladed system the fundamental frequency is N, /2 per revolution.
Stability can now be determined using either an eigenvalue analysis
(for hover) or Floquet theory for the periodic problem in forward
flight. An approximate stability analysis in forward flight is also
possible by performing an eigenanalysison the constant coefficient
portion of the system matrices.

When strong nonlinearities, such as dynamic stall, are present in
the equations, direct numerical integration is used to obtain blade
response. Representative examples of the solution of blade dynam-
ics in the presence of aerodynamic nonlinearities can be found in
Refs. 118 and 119. Finally, it should be mentioned that when us-
ing dynamic-stall models the procedure described in this section,
consisting of linearizing the perturbation equations about a non-
linear time-dependentequilibrium position and extracting stability
information using Floquet theory, might not be reliable.

E. Flap-LagProblem in Hover and Forward Flight

One of the important contributions of the research conducted in
the early 1970s was the fundamental understanding of the impor-
tance of the lead-lag degrees of freedom in rotary-wing aeroelastic-
ity. It was shown that the flap-lag type of instability is a result of
destabilizing inertia and aerodynamic coupling effects associated
with the two bending motions presentin this problem. It stems from
the low aerodynamic damping in the lead-lag motion.

The best treatment of the flap-lag problem in hover was by
Ormiston and Hodges,'** who used a simple centrally hinged,
spring-restrained model of a hingeless blade, similar to that shown
in Fig. 16, except that the hinge offset was zero and the blade was
torsionally rigid. Using a linear analysis, they have shown that this
instability is eliminated by elastic coupling, caused by the pitch
setting on the blade, which couples blade bending in and out of
the plane of rotation. There was very little awareness of the im-
portance of this effect on hingeless blade stability. The treatment
of the flap-lag problem, based on a flexible hingeless blade model,

Fig. 16 Offset-hinged spring restrained model of a hingeless blade.
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Fig. 17 Typical flap-lag stability boundary in hover without elastic
coupling and zero structural damping.

using one elastic mode for each degree of freedom, and a nonlin-
ear analysis conducted in the same time period,**'?! showed that
small amounts of structural damping (1% or less) are also suffi-
cient to eliminate this instability, even when elastic coupling is set
equal to zero. Figure 17 depicts a typical stability. Combinations
of rotating flap and lag frequencies wr; and w;, inside the ellipse-
like region represent unstable blade configurations for values of 6,
given on the curves. Here, 6, is the critical collective pitch setting
at which the linearized system becomes unstable. For the fully non-
linear system'?! regions of stable and unstable limit cycles are also
shown in Fig. 17. Structural coupling R, = 1.0, or small amounts of
damping completely eliminate the unstable, ellipse-like regions for
practical values of blade frequencies.

In addition to the theoretical studies on the flap-lag type of insta-
bility, Ormiston and Bousman'® have performed an experimental
study that validated the theoretical results. Their findings indicated
thatunder static-stallconditionsan unexpected type of blade motion
instability for torsionally rigid hingeless rotors was encountered.
Elastic coupling was not successful in eliminating this type of in-
stability, as indicated in Fig. 18. Similar conclusions were obtained
by Huber.!??

The flap-lag stability problem, without elastic coupling, exhibits
exaggerated sensitivity to small effects that influence the lead-lag
damping. For example, although dynamic inflow can affect flap-
lag stability when elastic coupling is set equal to zero, with elastic
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coupling present the effect of dynamic inflow on this instability in
hover is small.®"“!'7 An interesting result®> based on a finite ele-
ment model for a hingeless blade, shown in Fig. 14, is presented in
Fig. 19. The blade undergoes only flap and lag motion, and each
type of motion is represented by a varying number of elastic global
modal degrees of freedom (between 1 and 3, per type of motion): the
unstable region of the stability boundaries is denoted by the letter
U on the boundary. The figure illustrates the combined effect of the
number of modes used in the analysis and the elastic coupling pa-
rameter R.: when R, = 1.0, elasticcouplingis present; when R. =0,
elastic couplingis neglected;and values of 0.0 < R, < 1.0 represent
varying amounts of elastic coupling. From Fig. 19 for R, = 0.0, itis
always the fundamentallead-lagmode that yields the lowest stability
boundary, and for R, = 1.0 the flap-lag instability is virtually elim-
inated. The interesting results shown in the figure are the unstable
regions associated with the second lag mode, which for intermediate
values of the elastic coupling parameter R. = 0.60 becomes unsta-
ble at lower values of the critical collective pitch angle than the first
lag mode. The implication of this resultis that the second elastic lag
mode should be retained in the stability analysis of hingeless and
bearingless rotor blades.

After understanding the hover problem, several studies on the
flap-lag stability problemin forward flight were completed.!6-108.123

These studies were also performed on both the offset-hinged spring
restrained model of a hingeless blade!'?* as well as the fully elas-
tic blade.!%1%® Among these, Ref. 106 was the most realistic be-
cause it contained the effects of trim and reversed flow, which affect
blade behavior in forward flight. Later studies have illustrated the
sensitivity of flap-lag stability in forward flight®!? to dynamic in-
flow. This sensitivity, which is associated primarily with regressing
mode damping, was exaggerated because of the absence of elastic
coupling. Subsequently, a theoretical and experimental study®* has
shown that with elastic coupling the effect of dynamic inflow is
relatively small.

This descriptionindicates that it took more than a decade to com-
pletely understand flap-lag stability in hover and forward flight. In
hover it is a fairly weak instability, which can be eliminated by
elastic coupling and small amounts of damping. A stronger insta-
bility can be triggered on highly loaded rotors operating in stall. In
forward flight the problem is sensitive to small terms; and, as will
be shown next, in forward flight it is safer to consider the coupled
flap-lag-torsional problem.

F. Flap-Lag-Torsional Problem in Hover and Forward Flight

The coupled flap-lag-torsional aeroelastic problem provides a
more realistic representation of hingeless blade behavior than the
flap-lag problem. However, understanding the flap-lag instability
has an important implication for the complete coupled flap-lag-
torsional behavior. The first basic studies on coupled flap-lag-
torsionalaeroelasticbehaviorof hingelessrotorbladesin hover were
carried out between 1973 and 1980 (Refs. 54, 104, 122, and 124).
This research has shown that soft-in-plane hingeless rotor blades
are usually stable. A typical flap-lag-torsional stability boundary
taken from Ref. 104 is shown in Fig. 20. The main item of interest
in this figure is the bubble-like region of instability present at low
values of collective pitch. This instability occurs only in the pres-
ence of precone and is a flap-lag type of instability. Sometimes it is
called the precone-inducedflap-lag instability. It was also obtained
in Ref. 54. The unstable region decreases as the fundamental tor-
sionalfrequency @, is increasedfrom4.5 to 6.0 perrevolution. Very
small amounts of structural damping in lag (ns.; = 0.0025, 0.25%
of critical in lag) reduce this unstable region for the torsionally soft
blade and completely eliminate it for the stiffer blade (@, = 6.0).
Other results not shown here indicate that droop and sweep (see
Fig. 3) can have a strong beneficial as well as detrimental effect
on the hingeless blade stability. In addition, offsets between cross-
sectional elastic axis, aerodynamic center, and center of mass can
also influence blade stability. A similar study clarifying the effects
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of modeling assumptions on the coupled flap-lag-torsional stabil-
ity of a stiff-in-plane hingeless blade, including comparisons with
experimental data, was conducted in Ref. 125.

Other results, not shown here, also indicate that unsteady aerody-
namic effects, wake, and compressibility’>!?® can have a significant
effecton the coupledflap-lag-torsionalaeroelasticstability of hinge-
less rotor blades in hover. Another study'?” has shown that by com-
bining three-dimensional tip loss and unsteady inflow effects with
a conventional moderate-deflection theory remarkable agreement
between theoretical and experimental results was obtained. Most
analyses described in this section combine geometrically nonlinear
structural models of the blade with linear aerodynamic theories.
Therefore, an important key to substantial improvements in aeroe-
lastic modeling capability of rotor blades is linked to improving the
unsteady aerodynamic models.

Studies aimed at modeling coupled flap-lag-torsionalbehaviorin
forward flight started to appear in the early 1980s and continued
throughout most of the decade. The first comprehensive study of
the coupled flap-lag-torsional dynamics of hingeless rotor blades
in forward flight was presented in Ref. 97. This study, based on
the equations derived in Ref. 81, clearly demonstrated the role of
geometric nonlinearities and trim for this important problem. It was
also concluded that usually forward flight is stabilizing for soft-in-
plane blade configurations. However, forward flight caused severe
degradation in stability of stiff-in-plane configurations.

Figure21, from Ref. 97, illustrates a number of important effects.
The label CFLT on the curves denotes the results from coupled flap-
lag-torsional analysis. The label flap-lag denotes results obtained
from a flap-lag analysis. The full lines are results from a converged
nonlinear analysis, the dashed lines are results for the case when
geometrical nonlinearitiesare neglected. The results shown, depict-
ing the real part of the characteristic exponent for lag as a function
of u, are for propulsive trim. From the figure it is evident that blade
stability increases with forward flight for soft-in-plane configura-
tions. The importance of the geometrically nonlinear terms is also
evident from the figure. Comparing the stability margin (as repre-
sented by ¢, 4¢) from a flap-lag analysis with that obtained from a
flap-lag-torsional analysis it is clear that damping from a flap-lag
analysis is 250-300% lower than that obtained from the accurate
flap-lag-torsional analysis. Therefore, flap-lag analyses in forward
flight can be misleading and should be avoided in trend studies.

Subsequent research on hingeless rotor stability in forward
flight,'?® as well as more recent research,**!>° has confirmed the
conclusions presented in Ref. 97. In Refs. 128 and 129 the effect
of dynamic inflow was also included and was found to be relatively
small. All of the studies mentioned indicated that stiff-in-planecon-
figurations are destabilized by forward flight, whereas the stability
of soft-in-plane configurations increases with forward flight.

.
Q
=3

o Flap-lag-torsion trim
e Flap tim

— 1istlead-lag mode

---- 2nd lead-lag mode

.
=}
_ &

¥3=g.. eg==
0 Stable ==0==0=-0==0 \
Unstable

Real parrt of the characteristic exponent, §
=
N

| 1 1 ! 1 1 1 )

02 .
0 .05 .10 .15 .20 25 .30 .35 .40 .45
Advance ratio, |

Fig. 22 Effect of number of degrees of freedom used in trim analysis
on lead-lag damping vs p (&r1 = 1.40, &or; = 3.0, ©p1 = 1.15, o = 0.10,
and R, = 1.0) in propulsive trim.

The results presented in Ref. 97 were based on flap trim only. In
Ref. 86, the influence of this approximate trim procedure on blade
stability was determined. It is evident from Fig. 22, taken from
Ref. 86, that the effect of coupled trim on blade stability is small.
The destabilizing effect caused by forward flight on stiff-in-plane
rotors is also evident from Fig. 22.

The important trend that emerged from the studies on flap-lag-
torsional stability of hingeless blades in forward flight was that
forward flight destabilizes stiff-in-plane configurations.

G. Air and Ground Resonance

The ground-resonance problem of articulated rotors has been
quite well understoodas indicated earlier in this paper. When asym-
metry in the rotor support system or in the blades themselves exists,
the classical treatment®® is inadequate. Hammond'*® has considered
the ground resonance of an articulated rotor with one lag damper
inoperative, using Floquet theory. This was also the first paper to
demonstrate the convenientapplicationof Floquettheory to the class
of coupled rotor-fuselage problems involving asymmetry. Dissim-
ilarities introduce periodic coefficients in the equations of motion.
Blade-to-bladedissimilaritieshave been considered by McNulty.!*!

The effect of nonlinearities on ground resonance has also been
considered. Bellavitta et al.'*? considered the ground resonance of
an articulatedrotor helicopter where the landing gear had nonlinear
characteristics; the solutions were obtained using direct numeri-
cal integration. The influence of nonlinear damping on helicopter
ground resonance was studied by Tang and Dowell.!*® The analyti-
cal model included a three-bladed,articulatedrotor, with each blade
having only lead-lag motion, combined with a fuselage that could
pitch and roll. The formulation contains both a nonlinear damper
and a nonlinear landing gear damping. The analytical results were
compared with experiments conducted on a model, and good agree-
ment was obtained.

There is also evidencethat the aerodynamicloading on the blades
can have a significant role on the ground-resonanceproblem of hin-
geless and bearinglessrotors. For such configurations aeromechani-
cal studies frequently involve both air and ground resonance, which
are considered next.

The advent of hingeless and bearingless rotors has generated
strong interest in analyses capable of modeling coupled rotor-
fuselage problems. Several studies conducted in the late 1970s and
1980s have made important contributions toward the understanding
of air-resonance problems.

One of the first comprehensive theoretical studies of the aerome-
chanical stability of bearinglessrotors was conducted by Hodges'**
using the computer program FLAIR, based on the mathematical
model describedin Refs. 91 and 92. This study'** and its companion
one'*® deal mostly with soft-in-plane configurations using quasi-
steady aerodynamics. The analytical results were also compared
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with experimental data on bearingless main rotors, and good corre-
lation was obtained. FLAIR was also used to study hingeless rotor
aeromechanicalstability by comparingthe theory with experimental
data obtained by Bousman.!*® Overall agreement between theoret-
ical predictions and experimental data was good. When FLAIR is
used for hingeless rotors, it uses an offset-hinged, spring-restrained
model.

Bousman conducted a careful experimental investigation of the
effectof elastic couplingson the aeromechanicalstability of a hinge-
less rotor helicopter.*® Five different configurations were tested to
determine to what extent pitch-lag coupling and structural coupling
can successfully stabilize the air-resonancemode. This experimen-
tal data set has been widely used during the last decade as a basis
against which many analytical models have been validated. These
experimental results were compared first against theoretical results
of Hodges.’!"!3* The measured lead-lag regressing mode damping
agreed well with theory. Comparison of the theory and experiment
for the damping of the body modes showed significant differences
that were attributed by Bousman to dynamic inflow.

Johnson'?? compared Bousman’s results'3® with analytical pre-
dictions of ground resonance, using the model describedin Ref. 93.
The calculations were performed with and without dynamic inflow.
Use of dynamic inflow improved the correlation with experimental
data. He obtained the remarkable result that inflow dynamics in-
troduces an additional “inflow mode,” which explained previously
unresolved questions about the correlation between test and theory.

Venkatesan and Friedmann®*** developed a mathematicalmodel
for aeromechanical problems associated with multirotor vehicles.
A subset of this model consisting of a three-bladed, offset-hinged,
spring-restrainedmodel of a hingeless blade with flap-and-flag de-
grees of freedom for each blade (see Fig. 16) mounted on a gim-
bal, which could pitch and roll, was used to simulate the experi-
mental data obtained by Bousman.'*® The results obtained using
quasi-steady aerodynamics'*® were in good agreement with the ex-
perimental data, except that the quasi-steady aerodynamic model
was incapable of predicting the dynamic inflow mode found by
Johnson.!*” Subsequently both perturbationinflow and dynamic in-
flow aerodynamics were incorporatedin the coupled rotor-fuselage
model,'* and the results obtained with dynamic inflow produced
good agreementwith the experimentaldata. Furthermore, the inflow
mode obtained by Johnson was also reproduced. Results illustrat-
ing this unsteady aerodynamic effect are shown in Figs. 23 and 24.
Figure 23 shows the variation of modal frequenciesas a function of
rotor speed at zero collective pitch setting, using quasi-steady aero-
dynamics. All frequencies except the one correspondingto 0.7 Hz
are predicted well. When perturbation inflow and dynamic inflow
are included, the results shown in Fig. 24 indicate that with dynamic
inflow all frequenciesare predicted well.!*° Furthermore, the inflow
mode associated with the augmented states introduced by the dy-
namic inflow modelis also predicted.Itis shownin Ref. 139 thatthe
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Fig. 24 Variation of modal frequencies with €2, 8y = 0, configuration
4, where ), inflow mode and all other designations of the curves are
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identification of this mode is relatively complicated. In addition to
these results, very good agreement with the regressing mode damp-
ing was also obtained.

Another interesting aspect of the coupled rotor-fuselage aerome-
chanical problemin hover was studied by Loewy and Zotto.'** They
studied the effect of rotor shaft flexibility and associated rotor con-
trol coupling on the ground/air resonance of helicopters, which is of
interest for certain advanced helicopters that have a relatively flexi-
ble shaft. Numerical results were obtained for a four-bladed articu-
lated rotorresemblingthe OH-58D helicopter.It was found that shaft
flexibility/control coupling adds new modes of instability to ground
resonance.These models could be easily stabilizedby small amounts
of structural damping. Air-resonance type of instabilities, however,
were found to be more susceptible to shaft flexibility/control cou-
pling, and the instability in this case was stronger.

A comprehensive analytical study of the air-and ground-
resonance characteristics of simplified hingeless rotor helicopters
was undertaken by Ormiston.!*! The study examined the effect of
nonoscillatorybody modes on air resonance; the effect of high rotor
speeds and high Lock numbers was also considered. The study was
restricted to hover.

The studies mentioned were primarily for the case of hover, and
they did not clarify the role of the torsional degree of freedom on
the air-resonance problem. These items were carefully studied in
Refs. 116 and 117. The mathematical model derived for this cou-
pled rotor-fuselage system also has a provision for including an
active controller capable of suppressing air resonance. The blade is
a simple, offset-hinged, spring-restrainedmodel, with coupled flap-
lag-torsional dynamics for each blade attached to a rigid fuselage
with fiverigid-bodydegreesof freedom. Unsteady aerodynamicsare
represented using dynamic inflow of forward flight.®> In this model
there is complete coupling between trim and the aeroelastic analy-
sis. This mathematical model was used to analyze the behavior of a
four-bladedhingelessrotor helicoptersomewhatsimilarto the MBB
105 helicopter, with an artificially induced unstable air-resonance
mode. The system is described by 37 states. In air-resonance prob-
lems the lead-lag regressing mode is the critical degree of freedom.
Therefore, the essential features of this instability are described by
damping plots for this particulardegree of freedom. Figure 25 shows
that neglecting the torsional degree of freedom on the nominal con-
figuration increases the instability of the lead-lag regressing mode.
The trend of the two curves also tends to diverge at high advance
ratios. The addition of torsion amplifies the effect of the periodic
terms. At high values of advance ratio, the flap-lag-torsion model
shows a much greater difference between the constant and periodic
stability analysis than does the flap-lag analysis. The air resonance
of hingeless rotors in forward flight was also studied in Ref. 142.
Clearly, the neglectof the torsional degree of freedom is not prudent
in air-resonance simulations.

It is remarkable that in one decade (1978-1988) consider-
able progress was made in modeling and understanding air
and ground resonance. Reliable models need to include coupled
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flap-lag-torsionalblade models with geometricnonlinearities.Fuse-
lage pitch and roll combined with at least two translational degrees
of freedom are required. The inclusion of simple unsteady aero-
dynamics, as represented by dynamic inflow, is also essential. For
certain configurations pitch link flexibility and shaft bending might
also be important.

H. Composite Blade Modeling

Development of structural dynamic and aeroelastic models for
composite blades undergoing moderate or large deflections, along
with their applicationto aeroelasticity of hingeless,bearingless,and
tilt-rotor blades, as well as of coupled rotor-fuselage problems, has
been a particularly active area of research. Because of its impor-
tance, this research topic has also been addressed in several survey
papers .’ 14314 Most modern rotor blades are built from composites
because this type of construction guarantees essentially infinite life
compared to metal blades used previously that had to be replaced
after a few thousand hours of operation.

The first studies on composite blade modeling started to appearin
the late 1970s. Mansfield and Sobey'*® initiated the first pioneering
study of this difficult subject. They developedthe stiffnessproperties
of a fiber-reinforced composite tube subjected to coupled bending,
torsion, and extension. Because transverse shear and warping of the
cross section were not included in the model, it lacks some of the
ingredientsnecessary for compositerotor-bladeaeroelasticanalysis.

In the seminal work of Giavotto et al.,'*® prismatic composite
beams were modeled making use of the St.-Venant principle, which
allowed the “interior” or “central” solutionsto be expressedin terms
of polynomialsin the beam axial coordinate. Using the virtual work
principle, a two-dimensional, finite element based cross-sectional
analysis was then developed that supplies a fully populated 6 x 6
matrix [see Eq. (21)] of cross-sectional elastic constants (which
determines the shear center location) and stress recovery relations
for the cross sectionin terms of stress resultants. The blade analysis
of Ref. 147 uses the stiffnesses from this analysis supplemented
by those from Ref. 148 to account for the trapeze effect. These
works were part of the development of a comprehensive helicopter
analysis in Italy. Despite the generality of this approach, it was
largely unknown in the United States until the late 1980s.

The first structural model that was actually incorporatedand used
in an aeroelastic analysis of a composite rotor blade in hover was
developed by Hong and Chopra.!* In this model the blade was
treated as a single-cell, laminated box beam composed of an arbi-
trary layup of composite plies, and the cross-sectional properties
were found analytically. The strain-displacementrelations for mod-
erate deflections were taken from Hodges and Dowell,*! which does
notincludethe effect of transverse shear deformations. Each lamina
of the laminate was assumed to have orthotropicmaterial properties.
The equations of motion were obtained using Hamilton’s principle.

A finite element model was used to discretize the equations of mo-
tion. Subsequently this analysis was extended to the modeling of
composite bearingless rotor blades in hover,'® and a systematic
study was carried out to identify the importance of the stiffness cou-
pling terms on blade stability with fiber orientationand for different
configurations. In this model the composite flexbeam of the bearing-
less rotor blade was represented by an I section consisting of three
laminates. In addition to aeroelastic stability studies of composite
rotor blades in hover, Panda and Chopra!® also studied the aeroe-
lastic stability and response of hingeless composite rotor blades in
forward flight using the structural model presented in Ref. 149. It
was found that ply orientation is effective in reducing both blade
response and hub shears.

The accuracy of analytical structural modeling was improved by
Rehfield and coworkers,!*! =13 culminating in the study of the free
vibration of composite beams.!>* This model provided insight into
therole of couplingsand improved upon the model usedin Ref. 149.
It was used as the blade stiffnessmodelin Refs. 156 and 157 to treat
aeroelastic stability for isolated hingeless,composite rotor bladesin
the hovering flight condition, using a mixed finite element method
based on Ref. 158. Parametric studies are presented to investigate
the effects of composite elastic coupling and the thrust conditionon
the aeroelastic stability, especially that of the lightly damped lead-
lag mode. The stability of some of the elastically coupled cases
studied was sensitive to the nonclassical couplings. When bending-
shear coupling was neglected, for example, this led to significant
errors, especially at high thrust levels. Another significant effect
stems from changes in the equilibrium solution for elastic twist
caused by extension-twistcoupling. The necessity of including such
effects in the blade model for general-purposeanalysis was noted.

A more comprehensive analysis was developed by Kosmatka'*®
for the structuraldynamic modeling of compositeadvancedprop-fan
blades, which, with some modifications, were also suitable for the
general modeling of composite rotor blades. The associated cross-
sectional stiffness properties and shear center location were ob-
tained from an accompanyinglineartwo-dimensional finite-element
model, which takes into account arbitrary cross-sectional geometry
and generallyorthotropicmaterials. The initially twisted blade could
undergomoderatedeflections. Numericalresults for frequenciesand
mode shapes obtained from this structural dynamic model were in
good agreement with modal tests on conventional and advanced
propellers !¢

Bauchau and Hong*”'®! developed a series of large-deflection
composite beam models that were intended for rotor-bladestructural
dynamic and aeroelastic analysis. The final version of this theory is
capableof modeling naturally curved and twisted beams undergoing
large displacements and rotations and small strain and is a precursor
to the beam model in DYMORE (see what follows).

Atilgan and Hodges'®?> presented a theory for nonhomoge-
nous, anisotropic beams undergoing large global rotation, small
local rotation and small strain, using nonlinear-beam kinematics
based on Ref. 48. They used a perturbation analysis to obtain
a two-dimensional linear cross-sectional analysis governed by a
set of equations identical to those of Ref. 146, uncoupled from
the nonlinear, one-dimensional global analysis.'®® This work was
used'®* to study the aeroelastic stability of rotor blades using a
computer program based on Ref. 146 for determining the blade
stiffnesses.

Almost all of the work done by 1990 was restricted to closed cross
sections. The early 1990s seems to have marked a turning point in
the approach to composite blade modeling used by researchers in
RWA. Whereas most of the community continued along the lines
of modeling blades in terms of simplified geometries (e.g., box-
beams, thin walls, etc.), a subset of the community began instead
to focus on modeling of realistic blades (principally Hodges and
coworkers) and incorporation of those models into comprehensive
analyses (Bauchau and coworkers).

A detailed description of all of the currently available composite
blade theories is beyond the scope of this paper. However, some
background information is necessary to put into perspective how
composite blade theories developed from the early 1990s. In the
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usual approachto beam theory the in- and out-of-planedeformations
of the cross-sectionalplane (denoted as warping) are either assumed
to be small or neglected. Actually, one can only neglect the in-plane
warping (Poisson contraction and antielastic deformation) if the
stress field is uniaxial. Although isotropic, prismatic beams have
uniaxial stress fields, that is not the case for composite beams in
general.

In view of the relative smallness of the warping, the earli-
est structural models for composite rotor blades determined the
cross-sectional warping and elastic constants based on linear
analyses.!#:160:163.166 The Jinear, two-dimensional, cross-sectional
analysis is developed based on the assumption that it can be un-
coupled from the nonlinear, one-dimensional global analysis for the
beam. The sectional analysis is then done once at each of several
cross sections of a nonuniformbeam; the more rapidly the beam sec-
tion changes in the spanwise direction, the more sectional analyses
are necessary.

Unlike the mere assumption that the cross-sectional analysis is
uncoupled or linear, with the use of asymptotic methods one can
formulate conditions under which these assumptions actually hold,
and a basis for extending the analysis beyond classical cases can be
found.'®” Indeed, asymptotic analyses have indeed shown that this
uncoupling holds for most cases affecting analysis of rotor blades.
Necessary conditionsinclude small strain, linearly elastic materials,
and h < ¢, where h is a typical cross-sectional dimension and ¢
is the wavelength of deformation along the beam axis. Even so,
sufficiency is more difficult to establish. For example, the trapeze
effect, which satisfies the necessary conditions,can only be obtained
from a nonlinear cross-sectionalanalysis. In any case it is clear that
the discussion of composite rotor-blade structural modeling can be
divided into two categories: cross-sectional modeling approaches
and beam structural models that use one-dimensionalbeam kinetics
and kinematics.

Rotorbladesare typicallymodeled as beams for aeroelasticityand
dynamics analysesbecause of the simplicity of beam theory vs other
approaches. Whereas three-dimensionalfinite elementmodelinghas
tremendous capabilities,to model rotor blades in that manner would
be extremely expensive, requiring millions of degrees of freedom
and an immense amount of setup labor. Not just any beam theory
is suitable for composite rotor-blade analysis. A typical structural
model in this category should at least include geometric nonlin-
earities and initial twist. Theories in which only strain is assumed
to be small'4”-158:1%% (sometimes referred to as “geometrically ex-
act” theories) are now the ones most promising for general-purpose
analysis.

These methods require cross-sectional elastic constants as in-
put, however, and the determination of these constants is pre-
cisely where one encounters the most difficulties in composite-
blade modeling. For accurate determination of the cross-sectional
elastic constants of composite blades, two distinct characteristics
must be present: 1) the resulting theory must be elastically cou-
pled and 2) the cross-sectional deformation must be sufficiently
general.

The first requirement, to handle elastic coupling, is exhibited
in the strain energy per unit length, a quadratic form involv-
ing certain beam generalized strain measures (e.g., the exten-
sion of the reference line y,;, the elastic twist «;, and the elas-
tic bending curvatures k, and k3). For prismatic beams made of
isotropic materials, this quadratic form can take a simple form,
namely,

T
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When the beam is initially twisted and curved and is made of gener-
ally anisotropic materials, the strain energy per unit length instead

becomes of the form

T
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where the S;; constantsdepend on initial twist and curvatureas well
as on the geometry and materials of the cross section. There are two
alternative models that are commonly used. When the generalized
strains accounting for transverse shear (2y, and 2y3) are included
in the beam model,
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When a generalized strain accounting for the Vlasov or restrained
warping effect (k) is included in the beam model,
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The beam generalized strain measures are, in general, nonlinear
functions of the beam displacement and rotational variables.'®°
The second requirement for accurate modeling of composite
bladesis that the calculationof elastic constants take into accountall
possible cross-sectional deformations, including transverse shear.
Here an important distinction must be made. Because transverse
shearing is taken into account in the cross-sectional analysis, this
does not imply that one needs explicit transverse shearing general-
ized strains in the beam strain energy density. Moreover, whether
or not a separate warping degree of freedom needs to appear ex-
plicitly in the resulting beam theory also depends on the appli-
cation. The most basic model for closed cross sections, namely,
Eq. (20), when its cross-sectional constants are calculated prop-
erly, takes transverse shearing into account. Although it has neither
transverse shearing nor a separate warping variable, it is sufficiently
accurate foranalysisof static or low-frequencydynamicbehavior.'”°
The addition of generalized strain measures for transverse shear de-
formation [see Eq. (21)] will increase the accuracy of second and
higher modal frequencies associated with bending, and retention of
a cross-sectional warping variable [see Eq. (22)] will predict more
accurately the behavior of thin-walled, open-section beams. It is
important to distinguish between interior warping (also called St.
Venant warping), which affects the values of the elastic constants of
all three of the preceding models, and restrained warping, which is
only presentin Eq. (22) as an additional generalized strain measure
and which changes the boundary conditions of the one-dimensional
problem. Indeed, among the most commonly held misconceptions
is that one always improves a beam theory by adding more defor-
mation variables in the beam equations, some theories having as
many as nine.!”!'”> Results obtained from the simplest theory are
frequently as good or better, provided the simplest theory has the
correct elastic constants.!”> Although there are theories based on ad
hoc assumptionsthat do a good job for certain classes of blade cross
sections,'* the only way to guarantee that a cross-sectionalanalysis
will always predict correct elastic constants is to make certain that
it is asymptotically correct in terms of a small parameter, that is,
in fact, small. Asymptotically correct means that the approximate
solution agrees with an expansion of the exact solution (in this case
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three-dimensionalelasticity) in terms of the small parameter up to
a specified power of the small parameter.

Cross-sectional analyses can be classified as either analytical
or finite element based. The analytical ones can be further clas-
sified as ad hoc or asymptotic. The ad hoc analyses have become
quite sophisticated,74~18 all of which are restricted to the thin-
walled case, except Ref. 174. However, asymptotic analyses can
yield closed-form results for section constants and stress/strain re-
covery for beams with thin-walled geometries. As expected, they
are the most accurate of the thin-walled analyses, as shown in
Refs. 181-184. The ad hoc analyses generally invoke assump-
tions that do not hold in the general case, such as ignoring the
hoop stress or hoop moment or ignoring shell bending measures.
The most accurate and powerful of the ad hoc methods appears
to be Ref. 174; although it is only applicable to specific cross-
sectional geometries, it yields results that compare favorably with
those from finite element based analyses. The finite element based
analyses can be derived either from the point of view of St.
Venant's principle!46-160:165:166.185.186 o from that of asymptotic
methods.'®”-'87 In addition to the variational asymptotic method,
which provides a variationally consistent result, there are analyes
based on standard asymptotic methods.!3® Cross-sectional anal-
yses are usually linear, but an exception is the trapeze effect,
which requires either an initial stress approach® or a nonlinear
analysis 1810

One computercode fora finiteelementbased cross-sectionalanal-
ysis thathas shown consistentlyto be quite accurateis the Variational
Asymptotic Beam Section Analysis (VABS), originally developed
by Cesnik, Yu, Hodges, and their coworkers.!¢7:170:187.191-196 yABS
has promise for meeting industry’s requirements for an efficient,
reliable analysis tool for composite blades. Validation studies show
that it has accuracy and analysis flexibility comparable to more
costly, general-purpose three-dimensional finite element analyses
such as ABAQUS and can reduce computational effort by two to
three orders of magnitude relative to such tools. VABS can perform
a classical analysis[i.e., producing a model of the form of Eq. (20)]
or a Timoshenko-like analysis [i.e., producing a model of the form
of Eq. (21)] for beams with initial twist and curvature. VABS is also
capable of capturing the trapeze and Vlasov effects, which are use-
ful for specific beam applications. Finally, VABS can recover the
three-dimensionalstress and strain fields for finding stress concen-
trations, interlaminarstresses, etc. VABS is a two-dimensionalfinite
element analysis with a typical element library (triangular elements
with 3-6 nodes and quadrilateral elements with 4-9 nodes). It is
modular and can be easily integratedinto any CAD/CAM software.
VABS input is highly compatible with formats used in commer-
cial finite element packages, and so any two-dimensional meshed
model of a cross section constructedin PATRAN or ANSYS can be
converted into an input for VABS with very little effort.

The last 15 years have exhibited a lot of progress in composite
rotor-blade modeling. In summary, currently available composite-
blade theories that were developed and have been used in rotary-
wing aeroelastic applications can be separated into three groups:

1) Theories in the first group are those in which some ad hoc
cross-sectionaldeformationis assumed, which leads to a set of one-
dimensional equations governing behavior of the blade. Although
thisis the mostcommon approachfor blades made of isotropicmate-
rials, it can lead to grossly inaccurate results for composite blades.
Such assumptions as “plane sections remain plane” or “the cross
section is rigid in its own plane” or the uniaxial stress hypothesis
can all lead to serious errors. Examples of such errors are presented
in Refs. 173 and 197.

2) The second group of theoriesis based on equationsfor the blade
as a one-dimensional continuum (frequently written in a canonical
form), the cross-sectional properties of which are obtained from a
separate source. The canonical form of the one-dimensional equa-
tions has been known at least since the mid-1980s (Refs. 147, 156,
and 168) and typically takes as input a fully populated 6 x 6 ma-
trix of cross-sectional elastic constants. Methods for finding these
constants vary. Unfortunately, this approach lacks a rigorous basis
for extension to include effects other than extension, shear, torsion,

and bending (such as the Vlasov effect) and nonlinear effects such
as the trapeze effect.

3) Theoriesin the third group are those in which the equationsgov-
erning cross-sectional deformation and the one-dimensional equa-
tions governing behavior of the blade as an equivalentbeam are rig-
orously reduced from the common framework of three-dimensional
elasticity theory: This is the newest and most general approach. Ex-
amples include Refs. 163, 167, 187, 198-200. It provides the best
possible cross-sectional properties, quite accurate strain and stress
recovery,'”’ and yields the geometrically exact canonical equations
of motion for beams.'47-1%:1%8 It has been extended to include such
things as the trapeze'® and Vlasov!®* effects. The trapeze effect
accounts for the increase in effective torsional rigidity from axial
force, important in rotating beams. The Vlasov effect is important
for thin-walled open cross sections,examples of which are typically
used in bearingless rotor flexbeams.

These theories have been applied to a large number of rotary-
wing aeroelastic problems, as indicated next: 1) aeroelastic behav-
ior of composite hingeless and bearingless rotor blades in hover
and forward flight,!56:157.176.180.185.186,201.202 9y air and ground reso-
nance of helicopters with elastically tailored composite blades'’®;
and 3) tilt-rotoraeroelasticperformance,stability,and response with
elastically coupled composite rotor blades 29322

I. Swept-Tip, Hingeless, and Bearingless Rotors

The preceding sections have provided considerable information
on hingelessrotors. Therefore, it is interesting to discuss the aeroe-
lastic behavior of swept tip, or advanced geometry rotors schemat-
ically depicted in Fig. 26. “Swept tip” implies both sweep and
anhedral. Furthermore, the tip can have a tapered geometry. The
structural modeling of swept-tip rotor blades represents an impor-
tant practical and complicated theoretical problem. An approxi-
mate aeroelastic model for swept-tip rotor blades was developed
by Tarzanin and Vlaminck?®; however the approximate represen-
tation of the structural, inertia, and aerodynamic coupling effects
cause the model to be unreliable. The first consistent model for a
hingeless rotor with a swept tips was presented in Refs. 100 and
101. The hingeless blade was modeled using a Galerkin finite el-
ement technique, and a special element for structural, inertia, and
aerodynamic properties of the swept tip was developed. Both hover
and forward flight were considered. It was found that sweep and
precone can be used to modify the aeroelastic behavior of the blade.
The aeroelastic analysis of swept-tip rotors was also considered
in Ref. 209 with transonic aerodynamics and a free wake model.
Structural dynamic tests and correlation with a moderate deflec-
tion theory were undertaken by Ref. 210. Subsequent correlation
by Ref. 211 showed conclusively that geometrically exact analy-
ses correlate much better. Parametric studies for such rotors were
carried out.?°! Recently, Maier et al.?!? conducted correlations be-
tween experimental data and simulations using the CAMRAD II*!3
computer code good agreement was obtained between theory and
test for the case of hover. For forward flight the agreement between
simulation and test data was considerably worse than for the case
of hover.

One of the most important modern rotor systems is the bear-
ingless rotor, schematically depicted in Fig. 4. The analysis of a
bearingless main rotor (BMR) is complicated due to the redundant
structural configurationin the root region. Mathematical models for
such rotors made their first appearance in the late 1970s. One of
the earliest analyses of such a rotor configuration was incorporated

Inboard segment

Rotor hub
Pitch change bearing otorhu
Outboard segment
Swept tip \
Pitch link

Swash plate

Fig. 26 Typical hingeless blade with advanced geometry tip.
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into the FLAIR code.’!***!** Subsequently, Sivaneri and Chopra!®
developed a useful finite element model for bearingless rotors. A
flexbeam-type bearingless rotor is modeled using regular beam fi-
nite elements for the outer portion,arigid clevis,and multiple beams
to represent the flexbeam and the torque tube, as shown in Fig. 27.
Special displacement compatibility conditions are enforced at the
clevis. This model represents essentially a special redundant root
element for the flexbeam.

A sectiondealing with the properties of hingeless and bearingless
rotors would be incomplete without mentioning an insightful study
by Weller,”'* which provides a comparison of the aeromechanical
stability characteristics, in hover, for two models of convention-
ally designed soft-in-plane main rotors. One model is a bearingless
configuration, simulating the Bell helicopter M680 main rotor. The
second model is a hingeless rotor similar to the MBB BO-105 main
rotor. The purpose of the study was to compare the test data obtained
from the two models, identify their respective aeromechanical sta-
bility characteristics,and determine the design features that have a
primary effect on the air- and ground-resonancebehavior in hover.

In Ref. 214 two Froude-scaled models, one hingeless and one
bearingless, were tested. One was an MBB-105 1 : 4 scale rotor, and
the other one was a 1 : 4 scale bearinglessrotor resembling the Bell
bearinglessrotor. The rotors were tested on the Advanced Rotorcraft
Experimental Dynamics system, which can provide body pitch and
roll degrees of freedom, at both low and high thrust conditions. The
results obtained indicate that the hingeless rotor concept offers bet-
ter stability margins at moderate-to-high-thrist conditions because

Y
\ = =
L 74 TORQUE TUBE [ _ _ _
AL
: /
i I
A riexeeams” T
CLEVIS BLADE

Fig. 27 Idealized finite element model for the root region of a bearing-
less rotor.

Flexbeam

Elastomeric

Snubber ghear
Housing ameey

Spherical
Elastomeric
Bearing

Cuff

Flexbeam

Section A-A
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of its aeroelastic characteristics; thus, the hingeless rotor is more
stable at 1g thrust and above. For low thrust conditions, however,
the bearinglessrotor is better because of its larger structural damp-
ing caused by the elastomeric lag damper. In these comparisons it
is also important to keep in mind that the hingeless rotor had no
lag damper, and its damping was caused by its inherent structural
damping.

An outstanding study is Ref. 215, which describes in detail the
aeroelastic stability wind-tunnel testing of the Comanche BMR and
presents correlations with an analytical model. This BMR config-
uration is depicted in Fig. 28. A series of wind-tunnel tests were
performed on a é Froude-scaled model of the RAH-66 Comanche
BMR at the Boeing vertical/short takeoff and landing wind tunnel.
The tests had two objectives: 1) establish the aeromechanical stabil-
ity characteristics of the coupled rotor-fuselage system and 2) cor-
relate the experimental data with analytical stability predictions so
that the methodology can be used with confidence for the full-
scale aircraft. An initial test of the rotor with elastomeric dampers,
shownin Fig. 29, uncovereda limit-cycleinstability. This instability
manifested itself for the minimum flight weight configuration.
Figure 29, taken from Ref. 215, depicts the frequency and
damping of the coupled rotor-body system with elastomeric
snubber/dampers. The presence of the body degrees of freedom
and their coupling with the blade degrees of freedom modifies sig-
nificantly the dynamic characteristics compared to the isolated ro-
tor case. A frequency coalescence between the lag regressing and
the flap-regressingbody-roll mode now exists. Near this coales-
cence, the damping is low, and a limit-cycle oscillation occurs at
the regressing lag frequency. Closer examination of this nonlinear
phenomenon?’ revealed that this problem might also be present
when flying with the prototype flight weight. A decision was made
to replace the elastomeric snubber/damper by a Fluidlastic® snub-
ber/damper, which is also shown in Fig. 28. The Fluidlastic snub-
ber/damper is similar to the elastomeric dampers, except that it in-
cludes a chamber within the flat elements, which is filled with sili-
cone fluid to provide the bladelead-lagdamping. As the elastomeric
elements that constitute the wall of the chamber flex in shear, the
fluid is forced to flow around a rigid diverter protruding into the
fluid, thereby generating a damping force.

Fluid
Chamber

Spherical
Elastomeric
Bearing

Section A-A
Fluidlastic® Configuration

Fig. 28 Description of the Comanche bearingless main rotor, including both elastomeric and Fluidlastic® damper configurations.
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Fig. 29 Hover air resonance of the minimum flight weight configura-
tion with elastomeric dampers at 8-deg collective pitch.
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Fig. 30 Hover air resonance at 9-deg collective with Fluidlastic®
damper.

Further study revealed that nonlinearitiesin the stiffness and loss
factor of the elastomeric snubber/dampers were the cause of this
limit-cycle behavior. As shown in Ref. 215, the stiffness of the Flu-
idlastic damper is nearly linear, and using it eliminates the limit-
cycle instability. Figure 30 shows the hover air response character-
istics of the prototype flight weight configuration with the Fluid-
lastic dampers at 9 deg collective. The test data for both frequency
and damping are also compared with analytical results obtained
from the UMARC/B code, which is a Boeing modified version of

UMARC.?!¢ The correlations between the results for the code in
both hover and forward flight are quite good.

Duringthe last three decades, the helicopterindustryin the United
States and abroad has invested a very substantial amount of re-
sources in the developmentof productionhingeless and bearingless
rotor systems. Hingeless rotored helicopters, such as the MBB BO-
105 and the Westland Lynx, have been in production for almost
25 years. However, successful bearingless rotored helicopters have
gone into production only during the last decade. Typical exam-
ples are the MD-900 Explorer,?!” the Comanche bearingless main
rotor (BMR),?!3 and the Eurocopter EC135.2!® The MD900 and
the Comanche have five-bladed rotors, whereas the EC135 is four-
bladed. This is an indication that BMR technology has matured in
the last decade, and substantial gains in the understanding of aeroe-
lastic and aeromechanical aspects of these rotors have been made.
Therefore, one can view the BMR systems that are currently in pro-
duction as the crowning achievement of RWA during the last two
decades.

J.  Comprehensive Analysis Codes

The complexity of the RWA problem has motivated the devel-
opment of computer codes that have the capability of solving both
isolated-blade,as well as coupledrotor-fuselageproblems. Once the
large effort required was invested, other calculations in the area of
performance and flight mechanics were also included in the code.
Such codes became known as comprehensive analysis codes. Per-
haps the first of these codes, known as REXOR, was developed
by Lockheed in the early to mid-1970s (Ref. 219). One of the first
successfulcodes was CAMRAD developed by Johnson 322 which
eventually became CAMRAD/JA.?!

Another important comprehensive analysis code initiated in the
early 1980s and completed in the 1990s was the Second Gen-
eration Comprehensive Helicopter Analysis System, also known
as 2GCHAS,?*?72%8 which was developed with funding by the
U.S. Army Aeroflightdynamics Directorate (formerly known as
the Aeromechanics Laboratory), as a second generation replace-
ment for REXOR. Similar codes were developed by various heli-
copter companies, two of the better known ones are RDYNE?? and
COPTER.*

Another very useful code is UMARC,!¢ developed at the
University of Maryland. The UMAR code developed at the Univer-
sity of Maryland has also enjoyed considerablesuccess, as students
who graduated have taken the code with them and started using it in
an industrial setting. Subsequently, a more advanced and improved
versionof CAMRAD/JA was developed: CAMRAD I1.2!* The three
most advanced, CAMRAD II, 2GCHAS, and DYMORE, have taken
advantage of multibody dynamics that facilitate the effective treat-
ment of complex configurations 23!-233

Among the various comprehensive helicopter analysis codes,
CAMRAD 1I is perhaps the most widely used, both in the United
States as well as Europe and Japan. The code has been slightly more
successfulthanits competitorsin correlatingwith experimentaldata.
The wide acceptance of this code is evident from a recent paper that
describes the design aspects of a new production bearingless main
rotor used on the European EC135. This rotor has excellent damp-
ing margins throughoutits operation envelope. Modal damping for
this rotor in level flight is shown in Fig. 31. The dots are from the
flight test, and the solid line is the result of a calculation performed
by CAMRAD II. The agreement between theory and test is good.
The damping amounts to approximately 2.5% in the rotating sys-
tem. This rotor is equipped with an elastomeric lag damper and
apparently the code reproduces its behavior well.

The 2GCHAS code has also undergone considerable validation
duringthe last five years, and overall the correlationsindicate gener-
ally satisfactorypredictivecapability for a fairly wide range of rotor-
craft problems. A modified and improved version of the 2GCHAS
code has recently become available;it is denoted by the name Rotor-
craft Comprehensive Analysis Code (RCAS). In addition to consid-
erable improvements that enhance its computational efficiency and
reduce the run times required, the code has the added advantage of
beingable to run on PC platforms using the Linux operating system.
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Fig. 31 Regressing lag mode damping in forward flight and compari-
son with CAMRAD II.

The nonlinear beam element has been significantly improved over
the older 2GCHAS code by making use of embedded frames similar
to the method used in GRASP.

The multi-flexible-body code DYMORE by Bauchau and
coworker has extensive capability in modeling of system
hardware.!68:23!

IV. 21st Century—Period of Refinement
(2001-present)

It is evident from the various papers published since the turn
of the new century that the interest in studies dealing with aeroe-
lastic stability has diminished during the last few years. There
is some interest in tilt-rotor aeroelastic stability>** aeroelastic
scaling,2** active control for stability augmentation?** and aeroe-
lastic analysis of rotors with trailing-edge flaps used for vibration
reduction?® At the last European Rotorcraft Forum (28th Euro-
pean Rotorcraft Forum, Bristol, United Kingdom, September2002),
there was a total of seven dynamics sessions, where 21 differ-
ent papers were published and presented. Not a single paper dealt
with any significant aspect of the rotary-wing aeroelastic stability
problem.

A recent paper® clearly indicates that the primary interest has
shifted towards active vibration reduction, load correlation, and re-
finement of existing codes and analyses to provide better agreement
with existing experimental databases or new experimental test data
generated.

V. Conclusions

This historicalperspectiveillustratesthat the progress made in the
area of rotary-wing aeroelasticity during the last 60 years has been
spectacular. Given the complexity and diversity of the problems that
have been considered, as well as those that still persist, it is fair to
say that the accomplishments of this relatively short period compare
very favorably with what has been accomplished by the fixed-wing
community during an entire century. Furthermore, considering the
disparity in funding between these two areas of endeavor over such
an extended time period further amplifies the accomplishments in
RWA.
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